Exemplo n.º 1
0
                if not k in new:
                    new[k] = torch.Tensor(1)
                    new[k][0] = -valid['.'.join(parts[:-1] +
                                                ['weight'])].min() / 2
    return new


#dct = torch.load('resnet.pth')
#dct = fix_state(model.state_dict(), dct)
#model.load_state_dict(dct)

if use_cuda:
    model.cuda()

criterion = F.cross_entropy
optimizer = optim.Adam(model.parameters(),
                       lr=args.lr,
                       weight_decay=args.weight_decay)


def train(epoch):
    model.train()
    running_loss = 0
    running_total = 0
    correct = 0
    for i, (inputs, labels) in enumerate(trainloader):
        if use_cuda:
            inputs, labels = inputs.cuda(), labels.cuda()

        # wrap them in Variable
        inputs, labels = Variable(inputs), Variable(labels)
Exemplo n.º 2
0
if __name__ == "__main__":
  parser = argparse.ArgumentParser(description='pytorch SqueezeNet on CUDA')
  parser.add_argument('--data_path', type=str, default="./data",
                      help='path where the dataset is saved')
  parser.add_argument('--ckpt_path', type=str, default="./checkpoint",
                      help='path where the checkpoint to be saved')
  parser.add_argument('--device_id', type=int, default=0, help='device id of GPU. (Default: 0)')
  args = parser.parse_args()

  device = torch.device('cuda:'+str(args.device_id))
  version = '1.0'
  network = SqueezeNet(cfg.num_classes, version)
  network.to(device)
  criterion = LabelSmoothingCrossEntropy(reduction="mean", epsilon=cfg.label_smoothing_eps)
  optimizer = optim.RMSprop(network.parameters(), 
                            lr=cfg.lr_init, 
                            eps=cfg.rmsprop_epsilon,
                            momentum=cfg.rmsprop_momentum, 
                            alpha=cfg.rmsprop_decay)
  dataloader = create_dataset_pytorch(args.data_path, is_train=True)
  step_per_epoch = len(dataloader)
  scheduler = optim.lr_scheduler.StepLR(
                            optimizer, 
                            gamma=cfg.lr_decay_rate, 
                            step_size=cfg.lr_decay_epoch*step_per_epoch)
  # scheduler = optim.lr_scheduler.ExponentialLR(
  #                             optimizer, 
  #                             gamma=cfg.lr_decay_rate)

  q_ckpt = Queue(maxsize=cfg.keep_checkpoint_max)