Exemplo n.º 1
0
img_file_path = sys.argv[1] # the index should be 1, 0 is the 'eval.py'
img = Image.open(img_file_path)
img_norm = (img - IMG_MEAN) / IMG_STD
img_np = np.asarray([img_norm], dtype="float32")
img_tensor = torch.from_numpy(img_np)
prior_bboxes = generate_prior_bboxes(prior_layer_cfg = prior_layer_cfg)

if WILL_TEST:

    if USE_GPU:
        test_net_state = torch.load(path_to_trained_model)
    else:
        test_net_state = torch.load(path_to_trained_model, map_location='cpu')
    test_net = SSD(num_classes=3)
    test_net.load_state_dict(test_net_state)
    test_net.eval()

    test_image_permuted = img_tensor.permute(0, 3, 1, 2)
    test_image_permuted = Variable(test_image_permuted.float())

    test_conf_preds, test_loc_preds = test_net.forward(test_image_permuted)
    test_bbox_priors = prior_bboxes.unsqueeze(0)
    test_bbox_preds = loc2bbox(test_loc_preds.cpu(), test_bbox_priors.cpu(), center_var=0.1, size_var=0.2)
    sel_bbox_preds = nms_bbox(test_bbox_preds.squeeze().detach(), test_conf_preds.squeeze().detach().cpu(), overlap_threshold=0.5, prob_threshold=0.5)

    rects = []
    classes = []

    for key in sel_bbox_preds.keys():
        for value in sel_bbox_preds[key]:
            classes.append(key)
Exemplo n.º 2
0
test_data_loader = torch.utils.data.DataLoader(test_dataset,
                                               batch_size=16,
                                               shuffle=False,
                                               num_workers=0)
print('test items:', len(test_dataset))

file_name = 'SSD'
test_net_state = torch.load(os.path.join('.', file_name + '.pth'))

net = SSD(3)
if use_gpu:
    net = net.cuda()
net.load_state_dict(test_net_state)
itr = 0

net.eval()
for test_batch_idx, (loc_targets, conf_targets,
                     imgs) in enumerate(test_data_loader):
    itr += 1
    imgs = imgs.permute(0, 3, 1, 2).contiguous()
    if use_gpu:
        imgs = imgs.cuda()
    imgs = Variable(imgs)
    conf, loc = net.forward(imgs)
    conf = conf[0, ...]
    loc = loc[0, ...].cpu()

    prior = test_dataset.get_prior_bbox()
    prior = torch.unsqueeze(prior, 0)
    # prior = prior.cuda()
    real_bounding_box = loc2bbox(loc, prior, center_var=0.1, size_var=0.2)
Exemplo n.º 3
0
def test_net(test_dataset, class_labels, results_path):
    if torch.cuda.is_available():
        torch.set_default_tensor_type('torch.cuda.FloatTensor')

    # Load the save model and deploy
    test_net = SSD(len(class_labels))

    test_net_state = torch.load(os.path.join(results_path))
    test_net.load_state_dict(test_net_state)
    test_net.cuda()

    test_net.eval()

    # accuracy
    count_matched = 0
    count_gt = 0
    for test_item_idx in range(0, len(test_dataset)):
        # test_item_idx = random.choice(range(0, len(test_dataset)))
        test_image_tensor, test_label_tensor, test_bbox_tensor, prior_bbox = test_dataset[
            test_item_idx]

        # run Forward
        with torch.no_grad():
            pred_scores_tensor, pred_bbox_tensor = test_net.forward(
                test_image_tensor.unsqueeze(0).cuda())  # N C H W

        # scores -> Prob # because I deleted F.softmax~ at the ssd_net for net.eval
        pred_scores_tensor = F.softmax(pred_scores_tensor, dim=2)

        # bbox loc -> bbox (center)
        pred_bbox_tensor = loc2bbox(pred_bbox_tensor, prior_bbox.unsqueeze(0))

        # NMS : return tensor dictionary (bbo
        pred_picked = nms_bbox(
            pred_bbox_tensor[0],
            pred_scores_tensor[0])  # not tensor, corner form

        # Show the result
        test_image = test_image_tensor.cpu().numpy().astype(
            np.float32).transpose().copy()  # H, W, C
        test_image = ((test_image + 1) / 2)
        gt_label = test_label_tensor.cpu().numpy().astype(np.uint8).copy()
        gt_bbox_tensor = torch.cat([
            test_bbox_tensor[..., :2] - test_bbox_tensor[..., 2:] / 2,
            test_bbox_tensor[..., :2] + test_bbox_tensor[..., 2:] / 2
        ],
                                   dim=-1)
        gt_bbox = gt_bbox_tensor.detach().cpu().numpy().astype(
            np.float32).reshape((-1, 4)).copy() * 300
        gt_idx = gt_label > 0

        # Calculate accuracy
        pred_scores = pred_scores_tensor.detach().cpu().numpy().astype(
            np.float32).copy()
        pred_label = pred_scores[0].argmax(axis=1)

        n_matched = 0
        for gt, pr in zip(gt_label, pred_label):
            if gt > 0 and gt == pr:
                n_matched += 1
        acc_per_image = 100 * n_matched / gt_idx.sum()
        count_matched += n_matched
        count_gt += gt_idx.sum()

        # Show the results
        gt_bbox = gt_bbox[gt_idx]
        gt_label = gt_label[gt_idx]
        if False:
            for idx in range(gt_bbox.shape[0]):
                cv2.rectangle(test_image, (gt_bbox[idx][0], gt_bbox[idx][1]),
                              (gt_bbox[idx][2], gt_bbox[idx][3]), (255, 0, 0),
                              1)
                cv2.putText(test_image, str(gt_label[idx]),
                            (gt_bbox[idx][0], gt_bbox[idx][1]),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 0, 0), 1,
                            cv2.LINE_AA)

                #--------------------
                # cv2.rectangle(test_image, (pred_bbox[idx][0], pred_bbox[idx][1]), (pred_bbox[idx][2], pred_bbox[idx][3]),
                #               (0, 255, 0), 1)

                #-----------------------

            for cls_dict in pred_picked:
                for p_score, p_bbox in zip(cls_dict['picked_scores'],
                                           cls_dict['picked_bboxes']):
                    p_lbl = '%d | %.2f' % (cls_dict['class'], p_score)
                    p_bbox = p_bbox * 300
                    print(p_bbox, p_lbl)
                    cv2.rectangle(test_image, (p_bbox[0], p_bbox[1]),
                                  (p_bbox[2], p_bbox[3]), (0, 0, 255), 2)
                    cv2.putText(test_image, p_lbl, (p_bbox[0], p_bbox[1]),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1,
                                cv2.LINE_AA)
            plt.imshow(test_image)
            plt.suptitle(class_labels)
            plt.title('Temp Accuracy: {} %'.format(acc_per_image))
            plt.show()

    acc = 100 * count_matched / count_gt
    print('Classification acc: ', '%')