img_file_path = sys.argv[1] # the index should be 1, 0 is the 'eval.py' img = Image.open(img_file_path) img_norm = (img - IMG_MEAN) / IMG_STD img_np = np.asarray([img_norm], dtype="float32") img_tensor = torch.from_numpy(img_np) prior_bboxes = generate_prior_bboxes(prior_layer_cfg = prior_layer_cfg) if WILL_TEST: if USE_GPU: test_net_state = torch.load(path_to_trained_model) else: test_net_state = torch.load(path_to_trained_model, map_location='cpu') test_net = SSD(num_classes=3) test_net.load_state_dict(test_net_state) test_net.eval() test_image_permuted = img_tensor.permute(0, 3, 1, 2) test_image_permuted = Variable(test_image_permuted.float()) test_conf_preds, test_loc_preds = test_net.forward(test_image_permuted) test_bbox_priors = prior_bboxes.unsqueeze(0) test_bbox_preds = loc2bbox(test_loc_preds.cpu(), test_bbox_priors.cpu(), center_var=0.1, size_var=0.2) sel_bbox_preds = nms_bbox(test_bbox_preds.squeeze().detach(), test_conf_preds.squeeze().detach().cpu(), overlap_threshold=0.5, prob_threshold=0.5) rects = [] classes = [] for key in sel_bbox_preds.keys(): for value in sel_bbox_preds[key]: classes.append(key)
test_data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False, num_workers=0) print('test items:', len(test_dataset)) file_name = 'SSD' test_net_state = torch.load(os.path.join('.', file_name + '.pth')) net = SSD(3) if use_gpu: net = net.cuda() net.load_state_dict(test_net_state) itr = 0 net.eval() for test_batch_idx, (loc_targets, conf_targets, imgs) in enumerate(test_data_loader): itr += 1 imgs = imgs.permute(0, 3, 1, 2).contiguous() if use_gpu: imgs = imgs.cuda() imgs = Variable(imgs) conf, loc = net.forward(imgs) conf = conf[0, ...] loc = loc[0, ...].cpu() prior = test_dataset.get_prior_bbox() prior = torch.unsqueeze(prior, 0) # prior = prior.cuda() real_bounding_box = loc2bbox(loc, prior, center_var=0.1, size_var=0.2)
def test_net(test_dataset, class_labels, results_path): if torch.cuda.is_available(): torch.set_default_tensor_type('torch.cuda.FloatTensor') # Load the save model and deploy test_net = SSD(len(class_labels)) test_net_state = torch.load(os.path.join(results_path)) test_net.load_state_dict(test_net_state) test_net.cuda() test_net.eval() # accuracy count_matched = 0 count_gt = 0 for test_item_idx in range(0, len(test_dataset)): # test_item_idx = random.choice(range(0, len(test_dataset))) test_image_tensor, test_label_tensor, test_bbox_tensor, prior_bbox = test_dataset[ test_item_idx] # run Forward with torch.no_grad(): pred_scores_tensor, pred_bbox_tensor = test_net.forward( test_image_tensor.unsqueeze(0).cuda()) # N C H W # scores -> Prob # because I deleted F.softmax~ at the ssd_net for net.eval pred_scores_tensor = F.softmax(pred_scores_tensor, dim=2) # bbox loc -> bbox (center) pred_bbox_tensor = loc2bbox(pred_bbox_tensor, prior_bbox.unsqueeze(0)) # NMS : return tensor dictionary (bbo pred_picked = nms_bbox( pred_bbox_tensor[0], pred_scores_tensor[0]) # not tensor, corner form # Show the result test_image = test_image_tensor.cpu().numpy().astype( np.float32).transpose().copy() # H, W, C test_image = ((test_image + 1) / 2) gt_label = test_label_tensor.cpu().numpy().astype(np.uint8).copy() gt_bbox_tensor = torch.cat([ test_bbox_tensor[..., :2] - test_bbox_tensor[..., 2:] / 2, test_bbox_tensor[..., :2] + test_bbox_tensor[..., 2:] / 2 ], dim=-1) gt_bbox = gt_bbox_tensor.detach().cpu().numpy().astype( np.float32).reshape((-1, 4)).copy() * 300 gt_idx = gt_label > 0 # Calculate accuracy pred_scores = pred_scores_tensor.detach().cpu().numpy().astype( np.float32).copy() pred_label = pred_scores[0].argmax(axis=1) n_matched = 0 for gt, pr in zip(gt_label, pred_label): if gt > 0 and gt == pr: n_matched += 1 acc_per_image = 100 * n_matched / gt_idx.sum() count_matched += n_matched count_gt += gt_idx.sum() # Show the results gt_bbox = gt_bbox[gt_idx] gt_label = gt_label[gt_idx] if False: for idx in range(gt_bbox.shape[0]): cv2.rectangle(test_image, (gt_bbox[idx][0], gt_bbox[idx][1]), (gt_bbox[idx][2], gt_bbox[idx][3]), (255, 0, 0), 1) cv2.putText(test_image, str(gt_label[idx]), (gt_bbox[idx][0], gt_bbox[idx][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 0, 0), 1, cv2.LINE_AA) #-------------------- # cv2.rectangle(test_image, (pred_bbox[idx][0], pred_bbox[idx][1]), (pred_bbox[idx][2], pred_bbox[idx][3]), # (0, 255, 0), 1) #----------------------- for cls_dict in pred_picked: for p_score, p_bbox in zip(cls_dict['picked_scores'], cls_dict['picked_bboxes']): p_lbl = '%d | %.2f' % (cls_dict['class'], p_score) p_bbox = p_bbox * 300 print(p_bbox, p_lbl) cv2.rectangle(test_image, (p_bbox[0], p_bbox[1]), (p_bbox[2], p_bbox[3]), (0, 0, 255), 2) cv2.putText(test_image, p_lbl, (p_bbox[0], p_bbox[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) plt.imshow(test_image) plt.suptitle(class_labels) plt.title('Temp Accuracy: {} %'.format(acc_per_image)) plt.show() acc = 100 * count_matched / count_gt print('Classification acc: ', '%')