Exemplo n.º 1
0
def test_derivatives_in_spherical_coordinates():
    with GA_Printer():
        X = (r, th, phi) = symbols("r theta phi")
        curv = [[r * cos(phi) * sin(th), r * sin(phi) * sin(th), r * cos(th)], [1, r, r * sin(th)]]
        (er, eth, ephi, grad) = MV.setup("e_r e_theta e_phi", metric="[1,1,1]", coords=X, curv=curv)

        f = MV("f", "scalar", fct=True)
        A = MV("A", "vector", fct=True)
        B = MV("B", "grade2", fct=True)

        assert str(f) == "f"
        assert str(A) == "A__r*e_r + A__theta*e_theta + A__phi*e_phi"
        assert str(B) == "B__rtheta*e_r^e_theta + B__rphi*e_r^e_phi + B__thetaphi*e_theta^e_phi"

        assert str(grad * f) == "D{r}f*e_r + D{theta}f/r*e_theta + D{phi}f/(r*sin(theta))*e_phi"
        assert (
            str(grad | A)
            == "D{r}A__r + 2*A__r/r + A__theta*cos(theta)/(r*sin(theta)) + D{theta}A__theta/r + D{phi}A__phi/(r*sin(theta))"
        )
        assert (
            str(-MV.I * (grad ^ A))
            == "((A__phi*cos(theta)/sin(theta) + D{theta}A__phi - D{phi}A__theta/sin(theta))/r)*e_r + (-D{r}A__phi - A__phi/r + D{phi}A__r/(r*sin(theta)))*e_theta + (D{r}A__theta + A__theta/r - D{theta}A__r/r)*e_phi"
        )
        assert (
            str(grad ^ B)
            == "(D{r}B__thetaphi - B__rphi*cos(theta)/(r*sin(theta)) + 2*B__thetaphi/r - D{theta}B__rphi/r + D{phi}B__rtheta/(r*sin(theta)))*e_r^e_theta^e_phi"
        )

    return
Exemplo n.º 2
0
def test_functional_diffgeom_ch2():
    x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
    x, y = symbols('x, y', real=True)
    f = Function('f')

    assert (R2_p.point_to_coords(R2_r.point([x0, y0])) ==
           Matrix([sqrt(x0**2 + y0**2), atan2(y0, x0)]))
    assert (R2_r.point_to_coords(R2_p.point([r0, theta0])) ==
           Matrix([r0*cos(theta0), r0*sin(theta0)]))

    assert R2_p.jacobian(R2_r, [r0, theta0]) == Matrix(
        [[cos(theta0), -r0*sin(theta0)], [sin(theta0), r0*cos(theta0)]])

    field = f(R2.x, R2.y)
    p1_in_rect = R2_r.point([x0, y0])
    p1_in_polar = R2_p.point([sqrt(x0**2 + y0**2), atan2(y0, x0)])
    assert field.rcall(p1_in_rect) == f(x0, y0)
    assert field.rcall(p1_in_polar) == f(x0, y0)

    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])
    assert R2.x(p_r) == x0
    assert R2.x(p_p) == r0*cos(theta0)
    assert R2.r(p_p) == r0
    assert R2.r(p_r) == sqrt(x0**2 + y0**2)
    assert R2.theta(p_r) == atan2(y0, x0)

    h = R2.x*R2.r**2 + R2.y**3
    assert h.rcall(p_r) == x0*(x0**2 + y0**2) + y0**3
    assert h.rcall(p_p) == r0**3*sin(theta0)**3 + r0**3*cos(theta0)
Exemplo n.º 3
0
 def _get_lambda_evaluator(self):
     fr = self.d_vars[0]
     t  = self.u_interval.v
     p  = self.v_interval.v
     fx = fr*cos(t)*sin(p)
     fy = fr*sin(t)*sin(p)
     fz = fr*cos(p)
     return lambdify([t,p], [fx,fy,fz])
Exemplo n.º 4
0
def rs_sin(p, x, prec):
    """
    Sine of a series

    Returns the series expansion of the sin of p, about 0.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.rings import ring
    >>> from sympy.polys.ring_series import rs_sin
    >>> R, x, y = ring('x, y', QQ)
    >>> rs_sin(x + x*y, x, 4)
    -1/6*x**3*y**3 - 1/2*x**3*y**2 - 1/2*x**3*y - 1/6*x**3 + x*y + x

    See Also
    ========

    sin
    """
    R = x.ring
    if not p:
        return R(0)
    if _has_constant_term(p, x):
        zm = R.zero_monom
        c = p[zm]
        c_expr = c.as_expr()
        if R.domain is EX:
            t1, t2 = sin(c_expr), cos(c_expr)
        elif isinstance(c, PolyElement):
            try:
                t1, t2 = R(sin(c_expr)), R(cos(c_expr))
            except ValueError:
                raise DomainError("The given series can't be expanded in this " "domain.")
        else:
            raise DomainError("The given series can't be expanded in this " "domain")
            raise NotImplementedError
        p1 = p - c

        # Makes use of sympy cos, sin fuctions to evaluate the values of the cos/sin
        # of the constant term.
        return rs_sin(p1, x, prec) * t2 + rs_cos(p1, x, prec) * t1

    # Series is calculated in terms of tan as its evaluation is fast.
    if len(p) > 20 and p.ngens == 1:
        t = rs_tan(p / 2, x, prec)
        t2 = rs_square(t, x, prec)
        p1 = rs_series_inversion(1 + t2, x, prec)
        return rs_mul(p1, 2 * t, x, prec)
    one = R(1)
    n = 1
    c = [0]
    for k in range(2, prec + 2, 2):
        c.append(one / n)
        c.append(0)
        n *= -k * (k + 1)
    return rs_series_from_list(p, c, x, prec)
Exemplo n.º 5
0
def test_C99CodePrinter__precision():
    n = symbols('n', integer=True)
    f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
    f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
    f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
    assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)'
    assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)'
    assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)'

    for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']):
        def check(expr, ref):
            assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())
        check(Abs(n), 'abs(n)')
        check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
        check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
        check(exp(x*8.0), 'exp{s}(8.0{S}*x)')
        check(exp2(x), 'exp2{s}(x)')
        check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)')
        check(Mod(n, 2), '((n) % (2))')
        check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))')
        check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
        check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
        check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)')
        check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)')
        check(log2(x*8.0), 'log2{s}(8.0{S}*x)')
        check(log1p(x), 'log1p{s}(x)')
        check(2**x, 'pow{s}(2, x)')
        check(2.0**x, 'pow{s}(2.0{S}, x)')
        check(x**3, 'pow{s}(x, 3)')
        check(x**4.0, 'pow{s}(x, 4.0{S})')
        check(sqrt(3+x), 'sqrt{s}(x + 3)')
        check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})')
        check(hypot(x, y), 'hypot{s}(x, y)')
        check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
        check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
        check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
        check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
        check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
        check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
        check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')

        check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
        check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
        check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
        check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
        check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
        check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
        check(erf(42.*x), 'erf{s}(42.0{S}*x)')
        check(erfc(42.*x), 'erfc{s}(42.0{S}*x)')
        check(gamma(x), 'tgamma{s}(x)')
        check(loggamma(x), 'lgamma{s}(x)')

        check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
        check(floor(x + 2.), "floor{s}(x + 2.0{S})")
        check(fma(x, y, -z), 'fma{s}(x, y, -z)')
        check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
        check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
Exemplo n.º 6
0
def test_trigintegrate_mixed():
    assert trigintegrate(sin(x)*sec(x), x) == -log(cos(x))
    assert trigintegrate(sin(x)*csc(x), x) == x
    assert trigintegrate(sin(x)*cot(x), x) == sin(x)

    assert trigintegrate(cos(x)*sec(x), x) == x
    assert trigintegrate(cos(x)*csc(x), x) == log(sin(x))
    assert trigintegrate(cos(x)*tan(x), x) == -cos(x)
    assert trigintegrate(cos(x)*cot(x), x) == log(cos(x) - 1)/2 \
        - log(cos(x) + 1)/2 + cos(x)
    assert trigintegrate(cot(x)*cos(x)**2, x) == log(sin(x)) - sin(x)**2/2
Exemplo n.º 7
0
def test_bounded():
    x, y = symbols('xy')
    assert ask(x, Q.bounded) == False
    assert ask(x, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x, Q.bounded, Assume(y, Q.bounded)) == False
    assert ask(x, Q.bounded, Assume(x, Q.complex)) == False

    assert ask(x+1, Q.bounded) == False
    assert ask(x+1, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x+y, Q.bounded) == None
    assert ask(x+y, Q.bounded, Assume(x, Q.bounded)) == False
    assert ask(x+1, Q.bounded, Assume(x, Q.bounded) & \
                Assume(y, Q.bounded)) == True

    assert ask(2*x, Q.bounded) == False
    assert ask(2*x, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x*y, Q.bounded) == None
    assert ask(x*y, Q.bounded, Assume(x, Q.bounded)) == False
    assert ask(x*y, Q.bounded, Assume(x, Q.bounded) & \
                Assume(y, Q.bounded)) == True

    assert ask(x**2, Q.bounded) == False
    assert ask(2**x, Q.bounded) == False
    assert ask(2**x, Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(x**x, Q.bounded) == False
    assert ask(Rational(1,2) ** x, Q.bounded) == True
    assert ask(x ** Rational(1,2), Q.bounded) == False

    # sign function
    assert ask(sign(x), Q.bounded) == True
    assert ask(sign(x), Q.bounded, Assume(x, Q.bounded, False)) == True

    # exponential functions
    assert ask(log(x), Q.bounded) == False
    assert ask(log(x), Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(exp(x), Q.bounded) == False
    assert ask(exp(x), Q.bounded, Assume(x, Q.bounded)) == True
    assert ask(exp(2), Q.bounded) == True

    # trigonometric functions
    assert ask(sin(x), Q.bounded) == True
    assert ask(sin(x), Q.bounded, Assume(x, Q.bounded, False)) == True
    assert ask(cos(x), Q.bounded) == True
    assert ask(cos(x), Q.bounded, Assume(x, Q.bounded, False)) == True
    assert ask(2*sin(x), Q.bounded) == True
    assert ask(sin(x)**2, Q.bounded) == True
    assert ask(cos(x)**2, Q.bounded) == True
    assert ask(cos(x) + sin(x), Q.bounded) == True
Exemplo n.º 8
0
def test_bounded():
    x, y = symbols('x,y')
    assert ask(Q.bounded(x)) == False
    assert ask(Q.bounded(x), Q.bounded(x)) == True
    assert ask(Q.bounded(x), Q.bounded(y)) == False
    assert ask(Q.bounded(x), Q.complex(x)) == False

    assert ask(Q.bounded(x+1)) == False
    assert ask(Q.bounded(x+1), Q.bounded(x)) == True
    assert ask(Q.bounded(x+y)) == None
    assert ask(Q.bounded(x+y), Q.bounded(x)) == False
    assert ask(Q.bounded(x+1), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(2*x)) == False
    assert ask(Q.bounded(2*x), Q.bounded(x)) == True
    assert ask(Q.bounded(x*y)) == None
    assert ask(Q.bounded(x*y), Q.bounded(x)) == False
    assert ask(Q.bounded(x*y), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(x**2)) == False
    assert ask(Q.bounded(2**x)) == False
    assert ask(Q.bounded(2**x), Q.bounded(x)) == True
    assert ask(Q.bounded(x**x)) == False
    assert ask(Q.bounded(Rational(1,2) ** x)) == None
    assert ask(Q.bounded(Rational(1,2) ** x), Q.positive(x)) == True
    assert ask(Q.bounded(Rational(1,2) ** x), Q.negative(x)) == False
    assert ask(Q.bounded(sqrt(x))) == False

    # sign function
    assert ask(Q.bounded(sign(x))) == True
    assert ask(Q.bounded(sign(x)), ~Q.bounded(x)) == True

    # exponential functions
    assert ask(Q.bounded(log(x))) == False
    assert ask(Q.bounded(log(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(x))) == False
    assert ask(Q.bounded(exp(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(2))) == True

    # trigonometric functions
    assert ask(Q.bounded(sin(x))) == True
    assert ask(Q.bounded(sin(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(cos(x))) == True
    assert ask(Q.bounded(cos(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(2*sin(x))) == True
    assert ask(Q.bounded(sin(x)**2)) == True
    assert ask(Q.bounded(cos(x)**2)) == True
    assert ask(Q.bounded(cos(x) + sin(x))) == True
Exemplo n.º 9
0
def test_ccode_Piecewise_deep():
    p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
    assert p == (
            "2*((x < 1) ? (\n"
            "   x\n"
            ")\n"
            ": ((x < 2) ? (\n"
            "   x + 1\n"
            ")\n"
            ": (\n"
            "   pow(x, 2)\n"
            ")))")
    expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
    assert ccode(expr) == (
            "pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
            "   0\n"
            ")\n"
            ": (\n"
            "   1\n"
            ")) + cos(z) - 1")
    assert ccode(expr, assign_to='c') == (
            "c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
            "   0\n"
            ")\n"
            ": (\n"
            "   1\n"
            ")) + cos(z) - 1;")
Exemplo n.º 10
0
def test_functional_diffgeom_ch3():
    x0, y0 = symbols('x0, y0', real=True)
    x, y, t = symbols('x, y, t', real=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])

    s_field = f(R2.x, R2.y)
    v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
    assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
        x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)

    assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
    v = R2.e_x + 2*R2.e_y
    s = R2.r**2 + 3*R2.x
    assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
    series_x, series_y = zip(*series)
    assert all(
        [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
    assert all(
        [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
def test_functional_diffgeom_ch4():
    x0, y0, theta0 = symbols('x0, y0, theta0', real=True)
    x, y, r, theta = symbols('x, y, r, theta', real=True)
    r0 = symbols('r0', positive=True)
    f = Function('f')
    b1 = Function('b1')
    b2 = Function('b2')
    p_r = R2_r.point([x0, y0])
    p_p = R2_p.point([r0, theta0])

    f_field = b1(R2.x,R2.y)*R2.dx + b2(R2.x,R2.y)*R2.dy
    assert f_field(R2.e_x)(p_r) == b1(x0, y0)
    assert f_field(R2.e_y)(p_r) == b2(x0, y0)

    s_field_r = f(R2.x,R2.y)
    df = Differential(s_field_r)
    assert df(R2.e_x)(p_r).doit() == Derivative(f(x0, y0), x0)
    assert df(R2.e_y)(p_r).doit() == Derivative(f(x0, y0), y0)

    s_field_p = f(R2.r,R2.theta)
    df = Differential(s_field_p)
    assert trigsimp(df(R2.e_x)(p_p).doit()) == cos(theta0)*Derivative(f(r0, theta0), r0) - sin(theta0)*Derivative(f(r0, theta0), theta0)/r0
    assert trigsimp(df(R2.e_y)(p_p).doit()) == sin(theta0)*Derivative(f(r0, theta0), r0) + cos(theta0)*Derivative(f(r0, theta0), theta0)/r0

    assert R2.dx(R2.e_x)(p_r) == 1
    assert R2.dx(R2.e_y)(p_r) == 0

    circ = -R2.y*R2.e_x + R2.x*R2.e_y
    assert R2.dx(circ)(p_r).doit() == -y0
    assert R2.dy(circ)(p_r) == x0
    assert R2.dr(circ)(p_r) == 0
    assert simplify(R2.dtheta(circ)(p_r)) == 1

    assert (circ - R2.e_theta)(s_field_r)(p_r) == 0
Exemplo n.º 12
0
def test_Matrix_printing():
    # Test returning a Matrix
    mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
    A = MatrixSymbol('A', 3, 1)
    p = rcode(mat, A)
    assert p == (
        "A[0] = x*y;\n"
        "A[1] = ifelse(y > 0,x + 2,y);\n"
        "A[2] = sin(z);")
    # Test using MatrixElements in expressions
    expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
    p = rcode(expr)
    assert p  == ("ifelse(x > 0,2*A[2],A[2]) + sin(A[1]) + A[0]")
    # Test using MatrixElements in a Matrix
    q = MatrixSymbol('q', 5, 1)
    M = MatrixSymbol('M', 3, 3)
    m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
        [q[1,0] + q[2,0], q[3, 0], 5],
        [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
    assert rcode(m, M) == (
        "M[0] = sin(q[1]);\n"
        "M[1] = 0;\n"
        "M[2] = cos(q[2]);\n"
        "M[3] = q[1] + q[2];\n"
        "M[4] = q[3];\n"
        "M[5] = 5;\n"
        "M[6] = 2*q[4]/q[1];\n"
        "M[7] = sqrt(q[0]) + 4;\n"
        "M[8] = 0;")
Exemplo n.º 13
0
def roots_cubic(f, trig=False):
    """Returns a list of roots of a cubic polynomial."""
    if trig:
        a, b, c, d = f.all_coeffs()
        p = (3*a*c - b**2)/3/a**2
        q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
        D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
        if (D > 0) == True:
            rv = []
            for k in range(3):
                rv.append(2*sqrt(-p/3)*cos(acos(3*q/2/p*sqrt(-3/p))/3 - k*2*pi/3))
            return [i - b/3/a for i in rv]

    _, a, b, c = f.monic().all_coeffs()

    if c is S.Zero:
        x1, x2 = roots([1, a, b], multiple=True)
        return [x1, S.Zero, x2]

    p = b - a**2/3
    q = c - a*b/3 + 2*a**3/27

    pon3 = p/3
    aon3 = a/3

    if p is S.Zero:
        if q is S.Zero:
            return [-aon3]*3
        else:
            if q.is_real:
                if (q > 0) == True:
                    u1 = -root(q, 3)
                else:
                    u1 = root(-q, 3)
            else:
                u1 = root(-q, 3)
    elif q is S.Zero:
        y1, y2 = roots([1, 0, p], multiple=True)
        return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
    elif q.is_real and q < 0:
        u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)
    else:
        u1 = root(q/2 + sqrt(q**2/4 + pon3**3), 3)

    coeff = I*sqrt(3)/2

    u2 = u1*(-S.Half + coeff)
    u3 = u1*(-S.Half - coeff)

    if p is S.Zero:
        return [u1 - aon3, u2 - aon3, u3 - aon3]

    soln = [
        -u1 + pon3/u1 - aon3,
        -u2 + pon3/u2 - aon3,
        -u3 + pon3/u3 - aon3
    ]

    return soln
Exemplo n.º 14
0
def test_ccode_sign():
    expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))'
    expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))'
    expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'
    assert ccode(expr1) == ref1
    assert ccode(expr1, 'z') == 'z = %s;' % ref1
    assert ccode(expr2) == ref2
    assert ccode(expr3) == ref3
Exemplo n.º 15
0
def test_real():
    x, y = symbols('x y')
    assert ask(x, Q.real) == None
    assert ask(x, Q.real, Assume(x, Q.real)) == True
    assert ask(x, Q.real, Assume(x, Q.nonzero)) == True
    assert ask(x, Q.real, Assume(x, Q.positive)) == True
    assert ask(x, Q.real, Assume(x, Q.negative)) == True
    assert ask(x, Q.real, Assume(x, Q.integer)) == True
    assert ask(x, Q.real, Assume(x, Q.even)) == True
    assert ask(x, Q.real, Assume(x, Q.prime)) == True

    assert ask(x/sqrt(2), Q.real, Assume(x, Q.real)) == True
    assert ask(x/sqrt(-2), Q.real, Assume(x, Q.real)) == False

    I = S.ImaginaryUnit
    assert ask(x+1, Q.real, Assume(x, Q.real)) == True
    assert ask(x+I, Q.real, Assume(x, Q.real)) == False
    assert ask(x+I, Q.real, Assume(x, Q.complex)) == None

    assert ask(2*x, Q.real, Assume(x, Q.real)) == True
    assert ask(I*x, Q.real, Assume(x, Q.real)) == False
    assert ask(I*x, Q.real, Assume(x, Q.imaginary)) == True
    assert ask(I*x, Q.real, Assume(x, Q.complex)) == None

    assert ask(x**2, Q.real, Assume(x, Q.real)) == True
    assert ask(sqrt(x), Q.real, Assume(x, Q.negative)) == False
    assert ask(x**y, Q.real, Assume(x, Q.real) & Assume(y, Q.integer)) == True
    assert ask(x**y, Q.real, Assume(x, Q.real) & Assume(y, Q.real)) == None
    assert ask(x**y, Q.real, Assume(x, Q.positive) & \
                     Assume(y, Q.real)) == True

    # trigonometric functions
    assert ask(sin(x), Q.real) == None
    assert ask(cos(x), Q.real) == None
    assert ask(sin(x), Q.real, Assume(x, Q.real)) == True
    assert ask(cos(x), Q.real, Assume(x, Q.real)) == True

    # exponential function
    assert ask(exp(x), Q.real) == None
    assert ask(exp(x), Q.real, Assume(x, Q.real)) == True
    assert ask(x + exp(x), Q.real, Assume(x, Q.real)) == True

    # Q.complexes
    assert ask(re(x), Q.real) == True
    assert ask(im(x), Q.real) == True
Exemplo n.º 16
0
def test_rs_series():
    x, a, b, c = symbols('x, a, b, c')

    assert rs_series(a, a, 5).as_expr() == a
    assert rs_series(sin(1/a), a, 5).as_expr() == sin(1/a)
    assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0,
        5)).removeO()
    assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) +
        cos(a)).series(a, 0, 5)).removeO()
    assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)*
        cos(a)).series(a, 0, 5)).removeO()

    p = (sin(a) - a)*(cos(a**2) + a**4/2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
        10).removeO())

    p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
        10).removeO())

    p = sin(a + b + c)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = tan(sin(a**2 + 4) + b + c)
    assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0,
        6).removeO())
Exemplo n.º 17
0
def test_ccode_FunctionDef():
    name = 'test'
    args = (InArgument('double', a), InArgument('int', b))
    body = (Return(sin(a) + cos(b)),)
    results = (Result('double'),)
    f = FunctionDef(name, args, body, results)
    assert ccode(f) == ("double test(double a, int b) {\n"
                        "    return sin(a) + cos(b);\n"
                        "}")
Exemplo n.º 18
0
def test_real():
    x, y = symbols('x,y')
    assert ask(Q.real(x)) == None
    assert ask(Q.real(x), Q.real(x)) == True
    assert ask(Q.real(x), Q.nonzero(x)) == True
    assert ask(Q.real(x), Q.positive(x)) == True
    assert ask(Q.real(x), Q.negative(x)) == True
    assert ask(Q.real(x), Q.integer(x)) == True
    assert ask(Q.real(x), Q.even(x)) == True
    assert ask(Q.real(x), Q.prime(x)) == True

    assert ask(Q.real(x/sqrt(2)), Q.real(x)) == True
    assert ask(Q.real(x/sqrt(-2)), Q.real(x)) == False

    I = S.ImaginaryUnit
    assert ask(Q.real(x+1), Q.real(x)) == True
    assert ask(Q.real(x+I), Q.real(x)) == False
    assert ask(Q.real(x+I), Q.complex(x)) == None

    assert ask(Q.real(2*x), Q.real(x)) == True
    assert ask(Q.real(I*x), Q.real(x)) == False
    assert ask(Q.real(I*x), Q.imaginary(x)) == True
    assert ask(Q.real(I*x), Q.complex(x)) == None

    assert ask(Q.real(x**2), Q.real(x)) == True
    assert ask(Q.real(sqrt(x)), Q.negative(x)) == False
    assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) == True
    assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) == None
    assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) == True

    # trigonometric functions
    assert ask(Q.real(sin(x))) == None
    assert ask(Q.real(cos(x))) == None
    assert ask(Q.real(sin(x)), Q.real(x)) == True
    assert ask(Q.real(cos(x)), Q.real(x)) == True

    # exponential function
    assert ask(Q.real(exp(x))) == None
    assert ask(Q.real(exp(x)), Q.real(x)) == True
    assert ask(Q.real(x + exp(x)), Q.real(x)) == True

    # Q.complexes
    assert ask(Q.real(re(x))) == True
    assert ask(Q.real(im(x))) == True
Exemplo n.º 19
0
def test_rs_series():
    x, a, b, c = symbols('x, a, b, c')

    assert rs_series(a, a, 5).as_expr() == a
    assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0,
        5)).removeO()
    assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) +
        cos(a)).series(a, 0, 5)).removeO()
    assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)*
        cos(a)).series(a, 0, 5)).removeO()

    p = (sin(a) - a)*(cos(a**2) + a**4/2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
        10).removeO())

    p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
        10).removeO())

    p = sin(a + b + c)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = tan(sin(a**2 + 4) + b + c)
    assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0,
        6).removeO())

    p = a**QQ(2,5) + a**QQ(2,3) + a

    r = rs_series(tan(p), a, 2)
    assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \
        a + a**QQ(2,3) + a**QQ(2,5)

    r = rs_series(exp(p), a, 1)
    assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1

    r = rs_series(sin(p), a, 2)
    assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \
        a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5)

    r = rs_series(cos(p), a, 2)
    assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \
        a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1

    assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0,
            5).removeO()
Exemplo n.º 20
0
def _sin_pow_integrate(n, x):
    if n > 0:
        if n == 1:
            #Recursion break
            return -cos(x)

        # n > 0
        #  /                                                 /
        # |                                                 |
        # |    n           -1               n-1     n - 1   |     n-2
        # | sin (x) dx =  ______ cos (x) sin (x) + _______  |  sin (x) dx
        # |                                                 |
        # |                 n                         n     |
        #/                                                 /
        #
        #

        return (Rational(-1, n) * cos(x) * sin(x)**(n - 1) +
                Rational(n - 1, n) * _sin_pow_integrate(n - 2, x))

    if n < 0:
        if n == -1:
            ##Make sure this does not come back here again.
            ##Recursion breaks here or at n==0.
            return trigintegrate(1/sin(x), x)

        # n < 0
        #  /                                                 /
        # |                                                 |
        # |    n            1               n+1     n + 2   |     n+2
        # | sin (x) dx = _______ cos (x) sin (x) + _______  |  sin (x) dx
        # |                                                 |
        # |               n + 1                     n + 1   |
        #/                                                 /
        #

        return (Rational(1, n + 1) * cos(x) * sin(x)**(n + 1) +
                Rational(n + 2, n + 1) * _sin_pow_integrate(n + 2, x))

    else:
        #n == 0
        #Recursion break.
        return x
Exemplo n.º 21
0
def test_Function():
    assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(Max(x, y) + Min(x, y)) == "max(x, y) + min(x, y)"
    assert mcode(Max(x, y, z)) == "max(x, max(y, z))"
    assert mcode(Min(x, y, z)) == "min(x, min(y, z))"
Exemplo n.º 22
0
def test_sign():
    expr = sign(x) * y
    assert rust_code(expr) == "y*x.signum()"
    assert rust_code(expr, assign_to='r') == "r = y*x.signum();"

    expr = sign(x + y) + 42
    assert rust_code(expr) == "(x + y).signum() + 42"
    assert rust_code(expr, assign_to='r') == "r = (x + y).signum() + 42;"

    expr = sign(cos(x))
    assert rust_code(expr) == "x.cos().signum()"
Exemplo n.º 23
0
def test_rcode_Piecewise_deep():
    p = rcode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
    assert p == "2*ifelse(x < 1,x,ifelse(x < 2,x + 1,x^2))"
    expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
    p = rcode(expr)
    ref="x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1"
    assert p == ref

    ref="c = x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1;"
    p = rcode(expr, assign_to='c')
    assert p == ref
Exemplo n.º 24
0
def test_derivatives_in_spherical_coordinates():
    with GA_Printer():
        X = (r, th, phi) = symbols('r theta phi')
        curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]]
        (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv)

        f = MV('f', 'scalar', fct=True)
        A = MV('A', 'vector', fct=True)
        B = MV('B', 'grade2', fct=True)

        assert str(f) == 'f'
        assert str(A) == 'A__r*e_r + A__theta*e_theta + A__phi*e_phi'
        assert str(B) == 'B__rtheta*e_r^e_theta + B__rphi*e_r^e_phi + B__thetaphi*e_theta^e_phi'

        assert str(grad*f) == 'D{r}f*e_r + D{theta}f/r*e_theta + D{phi}f/(r*sin(theta))*e_phi'
        assert str(grad | A) == 'D{r}A__r + 2*A__r/r + A__theta*cos(theta)/(r*sin(theta)) + D{theta}A__theta/r + D{phi}A__phi/(r*sin(theta))'
        assert str(-MV.I*(grad ^ A)) == '((A__phi*cos(theta)/sin(theta) + D{theta}A__phi - D{phi}A__theta/sin(theta))/r)*e_r + (-D{r}A__phi - A__phi/r + D{phi}A__r/(r*sin(theta)))*e_theta + (D{r}A__theta + A__theta/r - D{theta}A__r/r)*e_phi'
        assert str(grad ^ B) == '(D{r}B__thetaphi - B__rphi*cos(theta)/(r*sin(theta)) + 2*B__thetaphi/r - D{theta}B__rphi/r + D{phi}B__rtheta/(r*sin(theta)))*e_r^e_theta^e_phi'

    return
Exemplo n.º 25
0
def test_ccode_sign():

    expr = sign(x) * y
    assert ccode(expr) == 'y*(((x) > 0) - ((x) < 0))'
    assert ccode(expr, 'z') == 'z = y*(((x) > 0) - ((x) < 0));'

    assert ccode(sign(2 * x + x**2) * x + x**2) == \
        'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'

    expr = sign(cos(x))
    assert ccode(expr) == '(((cos(x)) > 0) - ((cos(x)) < 0))'
Exemplo n.º 26
0
def _cos_pow_integrate(n,x):
    if n > 0 :
        if n==1:
            #Recursion break.
            return sin(x)

        # n > 0
        #  /                                                 /
        # |                                                 |
        # |    n            1               n-1     n - 1   |     n-2
        # | sin (x) dx =  ______ sin (x) cos (x) + _______  |  cos (x) dx
        # |                                                 |
        # |                 n                         n     |
        #/                                                 /
        #
        #

        return Rational(1,n)*sin(x)*cos(x)**(n-1)+Rational(n-1,n)*_cos_pow_integrate(n-2,x)

    if n < 0:
        if n == -1:
            ##Recursion break
            return trigintegrate(1/cos(x),x)
        #
        # n < 0
        #  /                                                 /
        # |                                                 |
        # |    n            -1              n+1     n + 2   |     n+2
        # | cos (x) dx = _______ sin (x) cos (x) + _______  |  cos (x) dx
        # |                                                 |
        # |               n + 1                     n + 1   |
        #/                                                 /
        #
        #


        return Rational(-1,n+1)*sin(x)*cos(x)**(n+1) + Rational(n+2,n+1) * _cos_pow_integrate(n+2,x)
    else :
        # n == 0
        #Recursion Break.
        return x
Exemplo n.º 27
0
def test_rcode_sgn():

    expr = sign(x) * y
    assert rcode(expr) == 'y*sign(x)'
    p = rcode(expr, 'z')
    assert p  == 'z = y*sign(x);'

    p = rcode(sign(2 * x + x**2) * x + x**2)
    assert p  == "x^2 + x*sign(x^2 + 2*x)"

    expr = sign(cos(x))
    p = rcode(expr)
    assert p == 'sign(cos(x))'
Exemplo n.º 28
0
def test_Function():
    assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
    assert mcode(sign(x)) == "sign(x)"
    assert mcode(exp(x)) == "exp(x)"
    assert mcode(log(x)) == "log(x)"
    assert mcode(factorial(x)) == "factorial(x)"
    assert mcode(floor(x)) == "floor(x)"
    assert mcode(atan2(y, x)) == "atan2(y, x)"
    assert mcode(beta(x, y)) == 'beta(x, y)'
    assert mcode(polylog(x, y)) == 'polylog(x, y)'
    assert mcode(harmonic(x)) == 'harmonic(x)'
    assert mcode(bernoulli(x)) == "bernoulli(x)"
    assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
Exemplo n.º 29
0
def rs_cos(p, iv, prec):
    """
    Cosine of a series

    Returns the series expansion of the cos of p, about 0.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.rings import ring
    >>> from sympy.polys.ring_series import rs_cos
    >>> R, x, y = ring('x, y', QQ)
    >>> rs_cos(x + x*y, x, 4)
    -1/2*x**2*y**2 - x**2*y - 1/2*x**2 + 1

    See Also
    ========

    cos
    """
    ring = p.ring
    if _has_constant_term(p, iv):
        zm = ring.zero_monom
        c = S(p[zm])
        if not c.is_real:
            raise NotImplementedError
        p1 = p - c

    # Makes use of sympy cos, sin fuctions to evaluate the values of the cos/sin
    # of the constant term. Should it be left unevaluated?
        from sympy.functions import cos, sin
        return cos(c)*rs_cos(p1, iv, prec) -  sin(c)*rs_sin(p1, iv, prec)

    # Series is calculated in terms of tan as its evaluation is fast.
    if len(p) > 20 and ring.ngens == 1:
        t = rs_tan(p/2, iv, prec)
        t2 = rs_square(t, iv, prec)
        p1 = rs_series_inversion(1+t2, iv, prec)
        return rs_mul(p1 ,1 - t2, iv, prec)
    one = ring(1)
    n = 1
    c = []
    for k in range(2, prec + 2, 2):
        c.append(one/n)
        c.append(0)
        n *= -k*(k - 1)
    return rs_series_from_list(p, c, iv, prec)
Exemplo n.º 30
0
    def calc(k, prev):
        """recursively calculate \int(cos(x)**2k, x)

        formula used:

        ⌠             n-1                ⌠
        ⎮ n          C (x)*S(x)    n-1   ⎮  n-2
        ⎮C (x)  =   ──────────── + ─── * ⎮ C (x)
        ⌡                 n         n    ⌡

        see: http://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions

                           n-1
        XXX maybe combine C (x)*S(x)  ->  C(n*x) + ...?
        """
        n = 2*k
        return (cos(_x))**(n-1) * sin(_x) / n  +  prev[k-1] * (n-1)/n
Exemplo n.º 31
0
def test_C99CodePrinter_custom_type():
    # We will look at __float128 (new in glibc 2.26)
    f128 = FloatType('_Float128', float128.nbits, float128.nmant,
                     float128.nexp)
    p128 = C99CodePrinter(
        dict(type_aliases={real: f128},
             type_literal_suffixes={f128: 'Q'},
             type_func_suffixes={f128: 'f128'},
             type_math_macro_suffixes={
                 real: 'f128',
                 f128: 'f128'
             },
             type_macros={f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__', )}))
    assert p128.doprint(x) == 'x'
    assert not p128.headers
    assert not p128.libraries
    assert not p128.macros
    assert p128.doprint(2.0) == '2.0Q'
    assert not p128.headers
    assert not p128.libraries
    assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'}

    assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q'
    assert p128.doprint(sin(x)) == 'sinf128(x)'
    assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)'

    var5 = Variable(x, f128, attrs={value_const})

    dcl5a = Declaration(var5)
    assert ccode(dcl5a) == 'const _Float128 x'
    var5b = Variable(x, f128, pi, attrs={value_const})
    dcl5b = Declaration(var5b)
    assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128'
    var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const})
    dcl5c = Declaration(var5b)
    assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(
        f128.decimal_dig)
Exemplo n.º 32
0
def test_Matrix_printing():
    # Test returning a Matrix
    mat = Matrix([x * y, Piecewise((2 + x, y > 0), (y, True)), sin(z)])
    A = MatrixSymbol('A', 3, 1)
    assert jscode(mat, A) == ("A[0] = x*y;\n"
                              "if (y > 0) {\n"
                              "   A[1] = x + 2;\n"
                              "}\n"
                              "else {\n"
                              "   A[1] = y;\n"
                              "}\n"
                              "A[2] = Math.sin(z);")
    # Test using MatrixElements in expressions
    expr = Piecewise((2 * A[2, 0], x > 0),
                     (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
    assert jscode(expr) == ("((x > 0) ? (\n"
                            "   2*A[2]\n"
                            ")\n"
                            ": (\n"
                            "   A[2]\n"
                            ")) + Math.sin(A[1]) + A[0]")
    # Test using MatrixElements in a Matrix
    q = MatrixSymbol('q', 5, 1)
    M = MatrixSymbol('M', 3, 3)
    m = Matrix([[sin(q[1, 0]), 0, cos(q[2, 0])],
                [q[1, 0] + q[2, 0], q[3, 0], 5],
                [2 * q[4, 0] / q[1, 0],
                 sqrt(q[0, 0]) + 4, 0]])
    assert jscode(m, M) == ("M[0] = Math.sin(q[1]);\n"
                            "M[1] = 0;\n"
                            "M[2] = Math.cos(q[2]);\n"
                            "M[3] = q[1] + q[2];\n"
                            "M[4] = q[3];\n"
                            "M[5] = 5;\n"
                            "M[6] = 2*q[4]/q[1];\n"
                            "M[7] = Math.sqrt(q[0]) + 4;\n"
                            "M[8] = 0;")
Exemplo n.º 33
0
def _get_simplified_sol(sol, func, collectterms):
    r"""
    Helper function which collects the solution on
    collectterms. Ideally this should be handled by odesimp.It is used
    only when the simplify is set to True in dsolve.

    The parameter ``collectterms`` is a list of tuple (i, reroot, imroot) where `i` is
    the multiplicity of the root, reroot is real part and imroot being the imaginary part.

    """
    f = func.func
    x = func.args[0]
    collectterms.sort(key=default_sort_key)
    collectterms.reverse()
    assert len(sol) == 1 and sol[0].lhs == f(x)
    sol = sol[0].rhs
    sol = expand_mul(sol)
    for i, reroot, imroot in collectterms:
        sol = collect(sol, x**i * exp(reroot * x) * sin(abs(imroot) * x))
        sol = collect(sol, x**i * exp(reroot * x) * cos(imroot * x))
    for i, reroot, imroot in collectterms:
        sol = collect(sol, x**i * exp(reroot * x))
    sol = powsimp(sol)
    return Eq(f(x), sol)
Exemplo n.º 34
0
def test_Function():
    assert mcode(f(x, y, z)) == "f[x, y, z]"
    assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]"
    assert mcode(sec(x) * acsc(x)) == "ArcCsc[x]*Sec[x]"
    assert mcode(atan2(x, y)) == "ArcTan[x, y]"
    assert mcode(conjugate(x)) == "Conjugate[x]"
    assert mcode(Max(x, y, z)*Min(y, z)) == "Max[x, y, z]*Min[y, z]"
    assert mcode(fresnelc(x)) == "FresnelC[x]"
    assert mcode(fresnels(x)) == "FresnelS[x]"
    assert mcode(gamma(x)) == "Gamma[x]"
    assert mcode(uppergamma(x, y)) == "Gamma[x, y]"
    assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
    assert mcode(loggamma(x)) == "LogGamma[x]"
    assert mcode(erf(x)) == "Erf[x]"
    assert mcode(erfc(x)) == "Erfc[x]"
    assert mcode(erfi(x)) == "Erfi[x]"
    assert mcode(erf2(x, y)) == "Erf[x, y]"
    assert mcode(expint(x, y)) == "ExpIntegralE[x, y]"
    assert mcode(erfcinv(x)) == "InverseErfc[x]"
    assert mcode(erfinv(x)) == "InverseErf[x]"
    assert mcode(erf2inv(x, y)) == "InverseErf[x, y]"
    assert mcode(Ei(x)) == "ExpIntegralEi[x]"
    assert mcode(Ci(x)) == "CosIntegral[x]"
    assert mcode(li(x)) == "LogIntegral[x]"
    assert mcode(Si(x)) == "SinIntegral[x]"
    assert mcode(Shi(x)) == "SinhIntegral[x]"
    assert mcode(Chi(x)) == "CoshIntegral[x]"
    assert mcode(beta(x, y)) == "Beta[x, y]"
    assert mcode(factorial(x)) == "Factorial[x]"
    assert mcode(factorial2(x)) == "Factorial2[x]"
    assert mcode(subfactorial(x)) == "Subfactorial[x]"
    assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]"
    assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]"
    assert mcode(catalan(x)) == "CatalanNumber[x]"
    assert mcode(harmonic(x)) == "HarmonicNumber[x]"
    assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]"
Exemplo n.º 35
0
    def build_ideal(x, terms):
        """
        Build generators for our ideal. Terms is an iterable with elements of
        the form (fn, coeff), indicating that we have a generator fn(coeff*x).

        If any of the terms is trigonometric, sin(x) and cos(x) are guaranteed
        to appear in terms. Similarly for hyperbolic functions. For tan(n*x),
        sin(n*x) and cos(n*x) are guaranteed.
        """
        gens = []
        I = []
        y = Dummy('y')
        for fn, coeff in terms:
            for c, s, t, rel in (
                    [cos, sin, tan, cos(x)**2 + sin(x)**2 - 1],
                    [cosh, sinh, tanh, cosh(x)**2 - sinh(x)**2 - 1]):
                if coeff == 1 and fn in [c, s]:
                    I.append(rel)
                elif fn == t:
                    I.append(t(coeff*x)*c(coeff*x) - s(coeff*x))
                elif fn in [c, s]:
                    cn = fn(coeff*y).expand(trig=True).subs(y, x)
                    I.append(fn(coeff*x) - cn)
        return list(set(I))
Exemplo n.º 36
0
def test_rs_series():
    x, a, b, c = symbols('x, a, b, c')

    assert rs_series(a, a, 5).as_expr() == a
    assert rs_series(sin(1 / a), a, 5).as_expr() == sin(1 / a)
    assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0,
                                                               5)).removeO()
    assert rs_series(sin(a) + cos(a), a,
                     5).as_expr() == ((sin(a) + cos(a)).series(a, 0,
                                                               5)).removeO()
    assert rs_series(sin(a) * cos(a), a,
                     5).as_expr() == ((sin(a) * cos(a)).series(a, 0,
                                                               5)).removeO()

    p = (sin(a) - a) * (cos(a**2) + a**4 / 2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(
        p.series(a, 0, 10).removeO())

    p = sin(a**2 / 2 + a / 3) + cos(a / 5) * sin(a / 2)**3
    assert expand(rs_series(p, a, 5).as_expr()) == expand(
        p.series(a, 0, 5).removeO())

    p = sin(x**2 + a) * (cos(x**3 - 1) - a - a**2)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(
        p.series(a, 0, 5).removeO())

    p = sin(a**2 - a / 3 + 2)**5 * exp(a**3 - a / 2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(
        p.series(a, 0, 10).removeO())

    p = sin(a + b + c)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(
        p.series(a, 0, 5).removeO())

    p = tan(sin(a**2 + 4) + b + c)
    assert expand(rs_series(p, a, 6).as_expr()) == expand(
        p.series(a, 0, 6).removeO())
Exemplo n.º 37
0
def test_matmul_simplify():
    A = MatrixSymbol('A', 1, 1)
    assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
        MatMul(A, ImmutableMatrix([[1]]))
Exemplo n.º 38
0
def test_trigintegrate_even():
    assert trigintegrate(sin(x)**2, x) == x / 2 - cos(x) * sin(x) / 2
    assert trigintegrate(cos(x)**2, x) == x / 2 + cos(x) * sin(x) / 2

    assert trigintegrate(sin(3 * x)**2,
                         x) == x / 2 - cos(3 * x) * sin(3 * x) / 6
    assert trigintegrate(cos(3 * x)**2,
                         x) == x / 2 + cos(3 * x) * sin(3 * x) / 6
    assert (trigintegrate(sin(x)**2 * cos(x)**2,
                          x) == x / 8 - sin(2 * x) * cos(2 * x) / 16)

    assert (trigintegrate(sin(x)**4 * cos(x)**2,
                          x) == x / 16 - sin(x) * cos(x) / 16 -
            sin(x)**3 * cos(x) / 24 + sin(x)**5 * cos(x) / 6)

    assert (trigintegrate(sin(x)**2 * cos(x)**4,
                          x) == x / 16 + cos(x) * sin(x) / 16 +
            cos(x)**3 * sin(x) / 24 - cos(x)**5 * sin(x) / 6)

    assert trigintegrate(
        sin(x)**(-4),
        x) == -2 * cos(x) / (3 * sin(x)) - cos(x) / (3 * sin(x)**3)

    assert trigintegrate(cos(x)**(-6),
                         x) == sin(x) / (5 * cos(x)**5) + 4 * sin(x) / (
                             15 * cos(x)**3) + 8 * sin(x) / (15 * cos(x))
Exemplo n.º 39
0
def test_rcode_functions():
    assert rcode(sin(x) ** cos(x)) == "sin(x)^cos(x)"
 def _get_lambda_evaluator(self):
     fr = self.d_vars[0]
     t = self.u_interval.v
     h = self.v_interval.v
     fx, fy = fr * cos(t), fr * sin(t)
     return lambdify([t, h], [fx, fy, h])
Exemplo n.º 41
0
def test_trigintegrate_symbolic():
    n = Symbol("n", integer=True)
    assert trigintegrate(cos(x)**n, x) is None
    assert trigintegrate(sin(x)**n, x) is None
    assert trigintegrate(cot(x)**n, x) is None
Exemplo n.º 42
0
def test_harmonic_rational():
    ne = S(6)
    no = S(5)
    pe = S(8)
    po = S(9)
    qe = S(10)
    qo = S(13)

    Heee = harmonic(ne + pe / qe)
    Aeee = (-log(10) + 2 *
            (-1 / S(4) + sqrt(5) / 4) * log(sqrt(-sqrt(5) / 8 + 5 / S(8))) +
            2 * (-sqrt(5) / 4 - 1 / S(4)) * log(sqrt(sqrt(5) / 8 + 5 / S(8))) +
            pi * (1 / S(4) + sqrt(5) / 4) /
            (2 * sqrt(-sqrt(5) / 8 + 5 / S(8))) + 13944145 / S(4720968))

    Heeo = harmonic(ne + pe / qo)
    Aeeo = (-log(26) + 2 * log(sin(3 * pi / 13)) * cos(4 * pi / 13) +
            2 * log(sin(2 * pi / 13)) * cos(32 * pi / 13) +
            2 * log(sin(5 * pi / 13)) * cos(80 * pi / 13) -
            2 * log(sin(6 * pi / 13)) * cos(5 * pi / 13) -
            2 * log(sin(4 * pi / 13)) * cos(pi / 13) +
            pi * cot(5 * pi / 13) / 2 -
            2 * log(sin(pi / 13)) * cos(3 * pi / 13) +
            2422020029 / S(702257080))

    Heoe = harmonic(ne + po / qe)
    Aeoe = (-log(20) + 2 *
            (1 / S(4) + sqrt(5) / 4) * log(-1 / S(4) + sqrt(5) / 4) + 2 *
            (-1 / S(4) + sqrt(5) / 4) * log(sqrt(-sqrt(5) / 8 + 5 / S(8))) +
            2 * (-sqrt(5) / 4 - 1 / S(4)) * log(sqrt(sqrt(5) / 8 + 5 / S(8))) +
            2 * (-sqrt(5) / 4 + 1 / S(4)) * log(1 / S(4) + sqrt(5) / 4) +
            11818877030 / S(4286604231) + pi *
            (sqrt(5) / 8 + 5 / S(8)) / sqrt(-sqrt(5) / 8 + 5 / S(8)))

    Heoo = harmonic(ne + po / qo)
    Aeoo = (-log(26) + 2 * log(sin(3 * pi / 13)) * cos(54 * pi / 13) +
            2 * log(sin(4 * pi / 13)) * cos(6 * pi / 13) +
            2 * log(sin(6 * pi / 13)) * cos(108 * pi / 13) -
            2 * log(sin(5 * pi / 13)) * cos(pi / 13) -
            2 * log(sin(pi / 13)) * cos(5 * pi / 13) +
            pi * cot(4 * pi / 13) / 2 -
            2 * log(sin(2 * pi / 13)) * cos(3 * pi / 13) +
            11669332571 / S(3628714320))

    Hoee = harmonic(no + pe / qe)
    Aoee = (-log(10) + 2 *
            (-1 / S(4) + sqrt(5) / 4) * log(sqrt(-sqrt(5) / 8 + 5 / S(8))) +
            2 * (-sqrt(5) / 4 - 1 / S(4)) * log(sqrt(sqrt(5) / 8 + 5 / S(8))) +
            pi * (1 / S(4) + sqrt(5) / 4) /
            (2 * sqrt(-sqrt(5) / 8 + 5 / S(8))) + 779405 / S(277704))

    Hoeo = harmonic(no + pe / qo)
    Aoeo = (-log(26) + 2 * log(sin(3 * pi / 13)) * cos(4 * pi / 13) +
            2 * log(sin(2 * pi / 13)) * cos(32 * pi / 13) +
            2 * log(sin(5 * pi / 13)) * cos(80 * pi / 13) -
            2 * log(sin(6 * pi / 13)) * cos(5 * pi / 13) -
            2 * log(sin(4 * pi / 13)) * cos(pi / 13) +
            pi * cot(5 * pi / 13) / 2 -
            2 * log(sin(pi / 13)) * cos(3 * pi / 13) + 53857323 / S(16331560))

    Hooe = harmonic(no + po / qe)
    Aooe = (-log(20) + 2 *
            (1 / S(4) + sqrt(5) / 4) * log(-1 / S(4) + sqrt(5) / 4) + 2 *
            (-1 / S(4) + sqrt(5) / 4) * log(sqrt(-sqrt(5) / 8 + 5 / S(8))) +
            2 * (-sqrt(5) / 4 - 1 / S(4)) * log(sqrt(sqrt(5) / 8 + 5 / S(8))) +
            2 * (-sqrt(5) / 4 + 1 / S(4)) * log(1 / S(4) + sqrt(5) / 4) +
            486853480 / S(186374097) + pi *
            (sqrt(5) / 8 + 5 / S(8)) / sqrt(-sqrt(5) / 8 + 5 / S(8)))

    Hooo = harmonic(no + po / qo)
    Aooo = (-log(26) + 2 * log(sin(3 * pi / 13)) * cos(54 * pi / 13) +
            2 * log(sin(4 * pi / 13)) * cos(6 * pi / 13) +
            2 * log(sin(6 * pi / 13)) * cos(108 * pi / 13) -
            2 * log(sin(5 * pi / 13)) * cos(pi / 13) -
            2 * log(sin(pi / 13)) * cos(5 * pi / 13) +
            pi * cot(4 * pi / 13) / 2 -
            2 * log(sin(2 * pi / 13)) * cos(3 * pi / 13) +
            383693479 / S(125128080))

    H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo]
    A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo]

    for h, a in zip(H, A):
        e = expand_func(h).doit()
        assert cancel(e / a) == 1
        assert abs(h.n() - a.n()) < 1e-12
Exemplo n.º 43
0
def test_ccode_functions():
    assert ccode(sin(x)**cos(x)) == "pow(sin(x), cos(x))"
Exemplo n.º 44
0
def trigintegrate(f, x, conds='piecewise'):
    """Integrate f = Mul(trig) over x

       >>> from sympy import Symbol, sin, cos, tan, sec, csc, cot
       >>> from sympy.integrals.trigonometry import trigintegrate
       >>> from sympy.abc import x

       >>> trigintegrate(sin(x)*cos(x), x)
       sin(x)**2/2

       >>> trigintegrate(sin(x)**2, x)
       x/2 - sin(x)*cos(x)/2

       >>> trigintegrate(tan(x)*sec(x), x)
       1/cos(x)

       >>> trigintegrate(sin(x)*tan(x), x)
       -log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)

       http://en.wikibooks.org/wiki/Calculus/Integration_techniques

    See Also
    ========

    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    """
    from sympy.integrals.integrals import integrate
    pat, a, n, m = _pat_sincos(x)

    f = f.rewrite('sincos')
    M = f.match(pat)

    if M is None:
        return

    n, m = M[n], M[m]
    if n.is_zero and m.is_zero:
        return x
    zz = x if n.is_zero else S.Zero

    a = M[a]

    if n.is_odd or m.is_odd:
        u = _u
        n_, m_ = n.is_odd, m.is_odd

        # take smallest n or m -- to choose simplest substitution
        if n_ and m_:

            # Make sure to choose the positive one
            # otherwise an incorrect integral can occur.
            if n < 0 and m > 0:
                m_ = True
                n_ = False
            elif m < 0 and n > 0:
                n_ = True
                m_ = False
            # Both are negative so choose the smallest n or m
            # in absolute value for simplest substitution.
            elif (n < 0 and m < 0):
                n_ = n > m
                m_ = not (n > m)

            # Both n and m are odd and positive
            else:
                n_ = (n < m)  # NB: careful here, one of the
                m_ = not (n < m)  # conditions *must* be true

        #  n      m       u=C        (n-1)/2    m
        # S(x) * C(x) dx  --> -(1-u^2)       * u  du
        if n_:
            ff = -(1 - u**2)**((n - 1) / 2) * u**m
            uu = cos(a * x)

        #  n      m       u=S   n         (m-1)/2
        # S(x) * C(x) dx  -->  u  * (1-u^2)       du
        elif m_:
            ff = u**n * (1 - u**2)**((m - 1) / 2)
            uu = sin(a * x)

        fi = integrate(ff, u)  # XXX cyclic deps
        fx = fi.subs(u, uu)
        if conds == 'piecewise':
            return Piecewise((fx / a, Ne(a, 0)), (zz, True))
        return fx / a

    # n & m are both even
    #
    #               2k      2m                         2l       2l
    # we transform S (x) * C (x) into terms with only S (x) or C (x)
    #
    # example:
    #  100     4       100        2    2    100          4         2
    # S (x) * C (x) = S (x) * (1-S (x))  = S (x) * (1 + S (x) - 2*S (x))
    #
    #                  104       102     100
    #               = S (x) - 2*S (x) + S (x)
    #       2k
    # then S   is integrated with recursive formula

    # take largest n or m -- to choose simplest substitution
    n_ = (abs(n) > abs(m))
    m_ = (abs(m) > abs(n))
    res = S.Zero

    if n_:
        #  2k         2 k             i             2i
        # C   = (1 - S )  = sum(i, (-) * B(k, i) * S  )
        if m > 0:
            for i in range(0, m // 2 + 1):
                res += ((-1)**i * binomial(m // 2, i) *
                        _sin_pow_integrate(n + 2 * i, x))

        elif m == 0:
            res = _sin_pow_integrate(n, x)
        else:

            # m < 0 , |n| > |m|
            #  /
            # |
            # |    m       n
            # | cos (x) sin (x) dx =
            # |
            # |
            #/
            #                                      /
            #                                     |
            #   -1        m+1     n-1     n - 1   |     m+2     n-2
            # ________ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
            #                                     |
            #   m + 1                     m + 1   |
            #                                    /

            res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
                   Rational(n - 1, m + 1) *
                   trigintegrate(cos(x)**(m + 2) * sin(x)**(n - 2), x))

    elif m_:
        #  2k         2 k            i             2i
        # S   = (1 - C ) = sum(i, (-) * B(k, i) * C  )
        if n > 0:

            #      /                            /
            #     |                            |
            #     |    m       n               |    -m         n
            #     | cos (x)*sin (x) dx  or     | cos (x) * sin (x) dx
            #     |                            |
            #    /                            /
            #
            #    |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
            #       n                                         2
            #    sin (x) term is expanded here in terms of cos (x),
            #    and then integrated.
            #

            for i in range(0, n // 2 + 1):
                res += ((-1)**i * binomial(n // 2, i) *
                        _cos_pow_integrate(m + 2 * i, x))

        elif n == 0:

            #   /
            #  |
            #  |  1
            #  | _ _ _
            #  |    m
            #  | cos (x)
            # /
            #

            res = _cos_pow_integrate(m, x)
        else:

            # n < 0 , |m| > |n|
            #  /
            # |
            # |    m       n
            # | cos (x) sin (x) dx =
            # |
            # |
            #/
            #                                      /
            #                                     |
            #    1        m-1     n+1     m - 1   |     m-2     n+2
            #  _______ cos (x) sin (x) + _______  |  cos (x) sin (x) dx
            #                                     |
            #   n + 1                     n + 1   |
            #                                    /

            res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
                   Rational(m - 1, n + 1) *
                   trigintegrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))

    else:
        if m == n:
            ##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
            res = integrate((sin(2 * x) * S.Half)**m, x)
        elif (m == -n):
            if n < 0:
                # Same as the scheme described above.
                # the function argument to integrate in the end will
                # be 1 , this cannot be integrated by trigintegrate.
                # Hence use sympy.integrals.integrate.
                res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
                       Rational(m - 1, n + 1) *
                       integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
            else:
                res = (
                    Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
                    Rational(n - 1, m + 1) *
                    integrate(cos(x)**(m + 2) * sin(x)**(n - 2), x))
    if conds == 'piecewise':
        return Piecewise((res.subs(x, a * x) / a, Ne(a, 0)), (zz, True))
    return res.subs(x, a * x) / a
Exemplo n.º 45
0
def test_trigintegrate_odd():
    assert trigintegrate(Rational(1), x) == x
    assert trigintegrate(x, x) is None
    assert trigintegrate(x**2, x) is None

    assert trigintegrate(sin(x), x) == -cos(x)
    assert trigintegrate(cos(x), x) == sin(x)

    assert trigintegrate(sin(3 * x), x) == -cos(3 * x) / 3
    assert trigintegrate(cos(3 * x), x) == sin(3 * x) / 3

    y = Symbol("y")
    assert trigintegrate(sin(y * x), x) == Piecewise(
        (-cos(y * x) / y, Ne(y, 0)), (0, True))
    assert trigintegrate(cos(y * x), x) == Piecewise(
        (sin(y * x) / y, Ne(y, 0)), (x, True))
    assert trigintegrate(sin(y * x)**2, x) == Piecewise(
        ((x * y / 2 - sin(x * y) * cos(x * y) / 2) / y, Ne(y, 0)), (0, True))
    assert trigintegrate(sin(y * x) * cos(y * x), x) == Piecewise(
        (sin(x * y)**2 / (2 * y), Ne(y, 0)), (0, True))
    assert trigintegrate(cos(y * x)**2, x) == Piecewise(
        ((x * y / 2 + sin(x * y) * cos(x * y) / 2) / y, Ne(y, 0)), (x, True))

    y = Symbol("y", positive=True)
    # TODO: remove conds='none' below. For this to work we would have to rule
    #       out (e.g. by trying solve) the condition y = 0, incompatible with
    #       y.is_positive being True.
    assert trigintegrate(sin(y * x), x, conds="none") == -cos(y * x) / y
    assert trigintegrate(cos(y * x), x, conds="none") == sin(y * x) / y

    assert trigintegrate(sin(x) * cos(x), x) == sin(x)**2 / 2
    assert trigintegrate(sin(x) * cos(x)**2, x) == -cos(x)**3 / 3
    assert trigintegrate(sin(x)**2 * cos(x), x) == sin(x)**3 / 3

    # check if it selects right function to substitute,
    # so the result is kept simple
    assert trigintegrate(sin(x)**7 * cos(x), x) == sin(x)**8 / 8
    assert trigintegrate(sin(x) * cos(x)**7, x) == -cos(x)**8 / 8

    assert (trigintegrate(sin(x)**7 * cos(x)**3,
                          x) == -sin(x)**10 / 10 + sin(x)**8 / 8)
    assert (trigintegrate(sin(x)**3 * cos(x)**7,
                          x) == cos(x)**10 / 10 - cos(x)**8 / 8)

    # both n, m are odd and -ve, and not necessarily equal
    assert trigintegrate(sin(x)**-1 * cos(x)**-1,
                         x) == -log(sin(x)**2 - 1) / 2 + log(sin(x))
Exemplo n.º 46
0
def test_harmonic_rational():
    ne = S(6)
    no = S(5)
    pe = S(8)
    po = S(9)
    qe = S(10)
    qo = S(13)

    Heee = harmonic(ne + pe / qe)
    Aeee = (-log(10) + 2 * (Rational(-1, 4) + sqrt(5) / 4) *
            log(sqrt(-sqrt(5) / 8 + Rational(5, 8))) + 2 *
            (-sqrt(5) / 4 - Rational(1, 4)) *
            log(sqrt(sqrt(5) / 8 + Rational(5, 8))) +
            pi * sqrt(2 * sqrt(5) / 5 + 1) / 2 + Rational(13944145, 4720968))

    Heeo = harmonic(ne + pe / qo)
    Aeeo = (-log(26) +
            2 * log(sin(pi * Rational(3, 13))) * cos(pi * Rational(4, 13)) +
            2 * log(sin(pi * Rational(2, 13))) * cos(pi * Rational(32, 13)) +
            2 * log(sin(pi * Rational(5, 13))) * cos(pi * Rational(80, 13)) -
            2 * log(sin(pi * Rational(6, 13))) * cos(pi * Rational(5, 13)) -
            2 * log(sin(pi * Rational(4, 13))) * cos(pi / 13) +
            pi * cot(pi * Rational(5, 13)) / 2 -
            2 * log(sin(pi / 13)) * cos(pi * Rational(3, 13)) +
            Rational(2422020029, 702257080))

    Heoe = harmonic(ne + po / qe)
    Aeoe = (
        -log(20) + 2 *
        (Rational(1, 4) + sqrt(5) / 4) * log(Rational(-1, 4) + sqrt(5) / 4) +
        2 * (Rational(-1, 4) + sqrt(5) / 4) *
        log(sqrt(-sqrt(5) / 8 + Rational(5, 8))) + 2 *
        (-sqrt(5) / 4 - Rational(1, 4)) *
        log(sqrt(sqrt(5) / 8 + Rational(5, 8))) + 2 *
        (-sqrt(5) / 4 + Rational(1, 4)) * log(Rational(1, 4) + sqrt(5) / 4) +
        Rational(11818877030, 4286604231) + pi * sqrt(2 * sqrt(5) + 5) / 2)

    Heoo = harmonic(ne + po / qo)
    Aeoo = (-log(26) +
            2 * log(sin(pi * Rational(3, 13))) * cos(pi * Rational(54, 13)) +
            2 * log(sin(pi * Rational(4, 13))) * cos(pi * Rational(6, 13)) +
            2 * log(sin(pi * Rational(6, 13))) * cos(pi * Rational(108, 13)) -
            2 * log(sin(pi * Rational(5, 13))) * cos(pi / 13) -
            2 * log(sin(pi / 13)) * cos(pi * Rational(5, 13)) +
            pi * cot(pi * Rational(4, 13)) / 2 -
            2 * log(sin(pi * Rational(2, 13))) * cos(pi * Rational(3, 13)) +
            Rational(11669332571, 3628714320))

    Hoee = harmonic(no + pe / qe)
    Aoee = (-log(10) + 2 * (Rational(-1, 4) + sqrt(5) / 4) *
            log(sqrt(-sqrt(5) / 8 + Rational(5, 8))) + 2 *
            (-sqrt(5) / 4 - Rational(1, 4)) *
            log(sqrt(sqrt(5) / 8 + Rational(5, 8))) +
            pi * sqrt(2 * sqrt(5) / 5 + 1) / 2 + Rational(779405, 277704))

    Hoeo = harmonic(no + pe / qo)
    Aoeo = (-log(26) +
            2 * log(sin(pi * Rational(3, 13))) * cos(pi * Rational(4, 13)) +
            2 * log(sin(pi * Rational(2, 13))) * cos(pi * Rational(32, 13)) +
            2 * log(sin(pi * Rational(5, 13))) * cos(pi * Rational(80, 13)) -
            2 * log(sin(pi * Rational(6, 13))) * cos(pi * Rational(5, 13)) -
            2 * log(sin(pi * Rational(4, 13))) * cos(pi / 13) +
            pi * cot(pi * Rational(5, 13)) / 2 -
            2 * log(sin(pi / 13)) * cos(pi * Rational(3, 13)) +
            Rational(53857323, 16331560))

    Hooe = harmonic(no + po / qe)
    Aooe = (
        -log(20) + 2 *
        (Rational(1, 4) + sqrt(5) / 4) * log(Rational(-1, 4) + sqrt(5) / 4) +
        2 * (Rational(-1, 4) + sqrt(5) / 4) *
        log(sqrt(-sqrt(5) / 8 + Rational(5, 8))) + 2 *
        (-sqrt(5) / 4 - Rational(1, 4)) *
        log(sqrt(sqrt(5) / 8 + Rational(5, 8))) + 2 *
        (-sqrt(5) / 4 + Rational(1, 4)) * log(Rational(1, 4) + sqrt(5) / 4) +
        Rational(486853480, 186374097) + pi * sqrt(2 * sqrt(5) + 5) / 2)

    Hooo = harmonic(no + po / qo)
    Aooo = (-log(26) +
            2 * log(sin(pi * Rational(3, 13))) * cos(pi * Rational(54, 13)) +
            2 * log(sin(pi * Rational(4, 13))) * cos(pi * Rational(6, 13)) +
            2 * log(sin(pi * Rational(6, 13))) * cos(pi * Rational(108, 13)) -
            2 * log(sin(pi * Rational(5, 13))) * cos(pi / 13) -
            2 * log(sin(pi / 13)) * cos(pi * Rational(5, 13)) +
            pi * cot(pi * Rational(4, 13)) / 2 -
            2 * log(sin(pi * Rational(2, 13))) * cos(3 * pi / 13) +
            Rational(383693479, 125128080))

    H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo]
    A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo]
    for h, a in zip(H, A):
        e = expand_func(h).doit()
        assert cancel(e / a) == 1
        assert abs(h.n() - a.n()) < 1e-12
Exemplo n.º 47
0
def _pat_sincos(x):
    a = Wild('a', exclude=[x])
    n, m = [Wild(s, exclude=[x], properties=[_integer_instance]) for s in 'nm']
    pat = sin(a * x)**n * cos(a * x)**m
    return pat, a, n, m
Exemplo n.º 48
0
def test_tensorflow_math():
    if not tf:
        skip("TensorFlow not installed")

    expr = Abs(x)
    assert tensorflow_code(expr) == "tensorflow.math.abs(x)"
    _compare_tensorflow_scalar((x, ), expr)

    expr = sign(x)
    assert tensorflow_code(expr) == "tensorflow.math.sign(x)"
    _compare_tensorflow_scalar((x, ), expr)

    expr = ceiling(x)
    assert tensorflow_code(expr) == "tensorflow.math.ceil(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = floor(x)
    assert tensorflow_code(expr) == "tensorflow.math.floor(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = exp(x)
    assert tensorflow_code(expr) == "tensorflow.math.exp(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = sqrt(x)
    assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = x**4
    assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = cos(x)
    assert tensorflow_code(expr) == "tensorflow.math.cos(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = acos(x)
    assert tensorflow_code(expr) == "tensorflow.math.acos(x)"
    _compare_tensorflow_scalar((x, ),
                               expr,
                               rng=lambda: random.uniform(0, 0.95))

    expr = sin(x)
    assert tensorflow_code(expr) == "tensorflow.math.sin(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = asin(x)
    assert tensorflow_code(expr) == "tensorflow.math.asin(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = tan(x)
    assert tensorflow_code(expr) == "tensorflow.math.tan(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = atan(x)
    assert tensorflow_code(expr) == "tensorflow.math.atan(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = atan2(y, x)
    assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)"
    _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random())

    expr = cosh(x)
    assert tensorflow_code(expr) == "tensorflow.math.cosh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = acosh(x)
    assert tensorflow_code(expr) == "tensorflow.math.acosh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = sinh(x)
    assert tensorflow_code(expr) == "tensorflow.math.sinh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = asinh(x)
    assert tensorflow_code(expr) == "tensorflow.math.asinh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = tanh(x)
    assert tensorflow_code(expr) == "tensorflow.math.tanh(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2))

    expr = atanh(x)
    assert tensorflow_code(expr) == "tensorflow.math.atanh(x)"
    _compare_tensorflow_scalar((x, ),
                               expr,
                               rng=lambda: random.uniform(-.5, .5))

    expr = erf(x)
    assert tensorflow_code(expr) == "tensorflow.math.erf(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())

    expr = loggamma(x)
    assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)"
    _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())
Exemplo n.º 49
0
def test_Functions():
    assert rust_code(sin(x) ** cos(x)) == "x.sin().powf(x.cos())"
    assert rust_code(abs(x)) == "x.abs()"
    assert rust_code(ceiling(x)) == "x.ceil()"
Exemplo n.º 50
0
 def _expr_big_minus(cls, a, z, n):
     if n.is_even:
         return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)))
     else:
         return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a)
Exemplo n.º 51
0
 def _expr_small(cls, a, z):
     return cos(2 * a * asin(sqrt(z)))
Exemplo n.º 52
0
def test_Function():
    assert mcode(f(x, y, z)) == "f[x, y, z]"
    assert mcode(sin(x)**cos(x)) == "Sin[x]^Cos[x]"
    assert mcode(conjugate(x)) == "Conjugate[x]"
Exemplo n.º 53
0
 def _expr_small_minus(cls, a, z):
     return (1 + z)**a * cos(2 * a * atan(sqrt(z)))
Exemplo n.º 54
0
def test_sin():
    R, x, y = ring('x, y', QQ)
    assert rs_sin(x, x, 9)/x**5 == \
        Rational(-1, 5040)*x**2 + Rational(1, 120) - Rational(1, 6)*x**(-2) + x**(-4)
    assert rs_sin(x*y + x**2*y**3, x, 9) == x**8*y**11/12 - \
        x**8*y**9/720 + x**7*y**9/12 - x**7*y**7/5040 - x**6*y**9/6 + \
        x**6*y**7/24 - x**5*y**7/2 + x**5*y**5/120 - x**4*y**5/2 - \
        x**3*y**3/6 + x**2*y**3 + x*y

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
    assert rs_sin(x + a, x, 5) == sin(a)*x**4/24 - cos(a)*x**3/6 - \
        sin(a)*x**2/2 + cos(a)*x + sin(a)
    assert rs_sin(x + x**2*y + a, x, 5) == -sin(a)*x**4*y**2/2 - \
        cos(a)*x**4*y/2 + sin(a)*x**4/24 - sin(a)*x**3*y - cos(a)*x**3/6 + \
        cos(a)*x**2*y - sin(a)*x**2/2 + cos(a)*x + sin(a)

    R, x, y = ring('x, y', EX)
    assert rs_sin(x + a, x, 5) == EX(sin(a)/24)*x**4 - EX(cos(a)/6)*x**3 - \
        EX(sin(a)/2)*x**2 + EX(cos(a))*x + EX(sin(a))
    assert rs_sin(x + x**2*y + a, x, 5) == -EX(sin(a)/2)*x**4*y**2 - \
        EX(cos(a)/2)*x**4*y + EX(sin(a)/24)*x**4 - EX(sin(a))*x**3*y - \
        EX(cos(a)/6)*x**3 + EX(cos(a))*x**2*y - EX(sin(a)/2)*x**2 + \
        EX(cos(a))*x + EX(sin(a))
Exemplo n.º 55
0
def test_rcode_functions():
    assert rcode(sin(x)**cos(x)) == "sin(x)^cos(x)"
    assert rcode(factorial(x) + gamma(y)) == "factorial(x) + gamma(y)"
    assert rcode(beta(Min(x, y), Max(x, y))) == "beta(min(x, y), max(x, y))"
Exemplo n.º 56
0
def test_cos():
    R, x, y = ring('x, y', QQ)
    assert rs_cos(x, x, 9)/x**5 == \
        Rational(1, 40320)*x**3 - Rational(1, 720)*x + Rational(1, 24)*x**(-1) - S.Half*x**(-3) + x**(-5)
    assert rs_cos(x*y + x**2*y**3, x, 9) == x**8*y**12/24 - \
        x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 - \
        x**7*y**8/120 + x**6*y**8/4 - x**6*y**6/720 + x**5*y**6/6 - \
        x**4*y**6/2 + x**4*y**4/24 - x**3*y**4 - x**2*y**2/2 + 1

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
    assert rs_cos(x + a, x, 5) == cos(a)*x**4/24 + sin(a)*x**3/6 - \
        cos(a)*x**2/2 - sin(a)*x + cos(a)
    assert rs_cos(x + x**2*y + a, x, 5) == -cos(a)*x**4*y**2/2 + \
        sin(a)*x**4*y/2 + cos(a)*x**4/24 - cos(a)*x**3*y + sin(a)*x**3/6 - \
        sin(a)*x**2*y - cos(a)*x**2/2 - sin(a)*x + cos(a)

    R, x, y = ring('x, y', EX)
    assert rs_cos(x + a, x, 5) == EX(cos(a)/24)*x**4 + EX(sin(a)/6)*x**3 - \
        EX(cos(a)/2)*x**2 - EX(sin(a))*x + EX(cos(a))
    assert rs_cos(x + x**2*y + a, x, 5) == -EX(cos(a)/2)*x**4*y**2 + \
        EX(sin(a)/2)*x**4*y + EX(cos(a)/24)*x**4 - EX(cos(a))*x**3*y + \
        EX(sin(a)/6)*x**3 - EX(sin(a))*x**2*y - EX(cos(a)/2)*x**2 - \
        EX(sin(a))*x + EX(cos(a))
Exemplo n.º 57
0
def test_C99CodePrinter__precision():
    n = symbols('n', integer=True)
    f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
    f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
    f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
    assert f32_printer.doprint(sin(x + 2.1)) == 'sinf(x + 2.1F)'
    assert f64_printer.doprint(sin(x + 2.1)) == 'sin(x + 2.1000000000000001)'
    assert f80_printer.doprint(sin(x + Float('2.0'))) == 'sinl(x + 2.0L)'

    for printer, suffix in zip([f32_printer, f64_printer, f80_printer],
                               ['f', '', 'l']):

        def check(expr, ref):
            assert printer.doprint(expr) == ref.format(s=suffix,
                                                       S=suffix.upper())

        check(Abs(n), 'abs(n)')
        check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
        check(
            sin(x + 4.0)**cos(x - 2.0),
            'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
        check(exp(x * 8.0), 'exp{s}(8.0{S}*x)')
        check(exp2(x), 'exp2{s}(x)')
        check(expm1(x * 4.0), 'expm1{s}(4.0{S}*x)')
        check(Mod(n, 2), '((n) % (2))')
        check(Mod(2 * n + 3, 3 * n + 5), '((2*n + 3) % (3*n + 5))')
        check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
        check(Mod(x, 2.0 * x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
        check(log(x / 2), 'log{s}((1.0{S}/2.0{S})*x)')
        check(log10(3 * x / 2), 'log10{s}((3.0{S}/2.0{S})*x)')
        check(log2(x * 8.0), 'log2{s}(8.0{S}*x)')
        check(log1p(x), 'log1p{s}(x)')
        check(2**x, 'pow{s}(2, x)')
        check(2.0**x, 'pow{s}(2.0{S}, x)')
        check(x**3, 'pow{s}(x, 3)')
        check(x**4.0, 'pow{s}(x, 4.0{S})')
        check(sqrt(3 + x), 'sqrt{s}(x + 3)')
        check(Cbrt(x - 2.0), 'cbrt{s}(x - 2.0{S})')
        check(hypot(x, y), 'hypot{s}(x, y)')
        check(sin(3. * x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
        check(cos(3. * x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
        check(tan(4. * y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
        check(asin(3. * x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
        check(acos(3. * x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
        check(atan(3. * x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
        check(atan2(3. * x, 2. * y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')

        check(sinh(3. * x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
        check(cosh(3. * x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
        check(tanh(4.0 * y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
        check(asinh(3. * x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
        check(acosh(3. * x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
        check(atanh(3. * x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
        check(erf(42. * x), 'erf{s}(42.0{S}*x)')
        check(erfc(42. * x), 'erfc{s}(42.0{S}*x)')
        check(gamma(x), 'tgamma{s}(x)')
        check(loggamma(x), 'lgamma{s}(x)')

        check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
        check(floor(x + 2.), "floor{s}(x + 2.0{S})")
        check(fma(x, y, -z), 'fma{s}(x, y, -z)')
        check(Max(x, 8.0, x**4.0),
              'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
        check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
Exemplo n.º 58
0
def test_rs_series():
    x, a, b, c = symbols('x, a, b, c')

    assert rs_series(a, a, 5).as_expr() == a
    assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0,
                                                               5)).removeO()
    assert rs_series(sin(a) + cos(a), a,
                     5).as_expr() == ((sin(a) + cos(a)).series(a, 0,
                                                               5)).removeO()
    assert rs_series(sin(a) * cos(a), a,
                     5).as_expr() == ((sin(a) * cos(a)).series(a, 0,
                                                               5)).removeO()

    p = (sin(a) - a) * (cos(a**2) + a**4 / 2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(
        p.series(a, 0, 10).removeO())

    p = sin(a**2 / 2 + a / 3) + cos(a / 5) * sin(a / 2)**3
    assert expand(rs_series(p, a, 5).as_expr()) == expand(
        p.series(a, 0, 5).removeO())

    p = sin(x**2 + a) * (cos(x**3 - 1) - a - a**2)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(
        p.series(a, 0, 5).removeO())

    p = sin(a**2 - a / 3 + 2)**5 * exp(a**3 - a / 2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(
        p.series(a, 0, 10).removeO())

    p = sin(a + b + c)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(
        p.series(a, 0, 5).removeO())

    p = tan(sin(a**2 + 4) + b + c)
    assert expand(rs_series(p, a, 6).as_expr()) == expand(
        p.series(a, 0, 6).removeO())

    p = a**QQ(2, 5) + a**QQ(2, 3) + a

    r = rs_series(tan(p), a, 2)
    assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \
        a + a**QQ(2,3) + a**QQ(2,5)

    r = rs_series(exp(p), a, 1)
    assert r.as_expr() == a**QQ(4, 5) / 2 + a**QQ(2, 3) + a**QQ(2, 5) + 1

    r = rs_series(sin(p), a, 2)
    assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \
        a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5)

    r = rs_series(cos(p), a, 2)
    assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \
        a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1

    assert rs_series(sin(a) / 7, a,
                     5).as_expr() == (sin(a) / 7).series(a, 0, 5).removeO()

    assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \
                    x**2/2 + x
    assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \
                    8*x**2 + 4*x
    assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \
                    x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + \
                    x**2/2 + x
    assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \
                    x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - \
                    x**2*a**4/2 + x*a**2
Exemplo n.º 59
0
def roots_cubic(f, trig=False):
    """Returns a list of roots of a cubic polynomial.

    References
    ==========
    [1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
    (accessed November 17, 2014).
    """
    if trig:
        a, b, c, d = f.all_coeffs()
        p = (3*a*c - b**2)/3/a**2
        q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
        D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
        if (D > 0) == True:
            rv = []
            for k in range(3):
                rv.append(2*sqrt(-p/3)*cos(acos(3*q/2/p*sqrt(-3/p))/3 - k*2*pi/3))
            return [i - b/3/a for i in rv]

    _, a, b, c = f.monic().all_coeffs()

    if c is S.Zero:
        x1, x2 = roots([1, a, b], multiple=True)
        return [x1, S.Zero, x2]

    p = b - a**2/3
    q = c - a*b/3 + 2*a**3/27

    pon3 = p/3
    aon3 = a/3

    u1 = None
    if p is S.Zero:
        if q is S.Zero:
            return [-aon3]*3
        if q.is_real:
            if q.is_positive:
                u1 = -root(q, 3)
            elif q.is_negative:
                u1 = root(-q, 3)
    elif q is S.Zero:
        y1, y2 = roots([1, 0, p], multiple=True)
        return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
    elif q.is_real and q.is_negative:
        u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)

    coeff = I*sqrt(3)/2
    if u1 is None:
        u1 = S(1)
        u2 = -S.Half + coeff
        u3 = -S.Half - coeff
        a, b, c, d = S(1), a, b, c
        D0 = b**2 - 3*a*c
        D1 = 2*b**3 - 9*a*b*c + 27*a**2*d
        C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3)
        return [-(b + uk*C + D0/C/uk)/3/a for uk in [u1, u2, u3]]

    u2 = u1*(-S.Half + coeff)
    u3 = u1*(-S.Half - coeff)

    if p is S.Zero:
        return [u1 - aon3, u2 - aon3, u3 - aon3]

    soln = [
        -u1 + pon3/u1 - aon3,
        -u2 + pon3/u2 - aon3,
        -u3 + pon3/u3 - aon3
    ]

    return soln
Exemplo n.º 60
0
def test_Function():
    assert maple_code(sin(x)**cos(x)) == "sin(x)^cos(x)"
    assert maple_code(abs(x)) == "abs(x)"
    assert maple_code(ceiling(x)) == "ceil(x)"