Exemplo n.º 1
0
def matsimp(expr):
    """do indexing, Trace, Determinant and expand matrix equation
    >>> from sympy import *
    >>> from symplus.strplus import init_mprinting
    >>> init_mprinting()
    >>> A = ImmutableMatrix(2, 2, symbols('A(:2)(:2)'))
    >>> B = ImmutableMatrix(2, 2, symbols('B(:2)(:2)'))
    >>> C = ImmutableMatrix(2, 2, symbols('C(:2)(:2)'))
    >>> M = MatrixSymbol('M', 2, 2)
    >>> M[1,1].xreplace({M: B*C})
    <BLANKLINE>
    [B00*C00 + B01*C10 B00*C01 + B01*C11]
    [B10*C00 + B11*C10 B10*C01 + B11*C11][1, 1]
    >>> matsimp(_)
    B10*C01 + B11*C11
    >>> Eq(Trace(B+C), 0)
    0 == Trace(
    [B00 + C00 B01 + C01]
    [B10 + C10 B11 + C11])
    >>> matsimp(_)
    0 == B00 + B11 + C00 + C11
    >>> Eq(A.T-A, ZeroMatrix(2,2))
    <BLANKLINE>
    [        0 -A01 + A10]
    [A01 - A10          0] == 0
    >>> matsimp(_)
    (-A01 + A10 == 0) /\ (0 == A01 - A10)
    """
    from sympy.simplify.simplify import bottom_up

    # do indexing: [.., aij ,..][i,j] -> aij
    expr = do_indexing(expr)
    # deep doit: Trace([.., aij ,..]) -> ..+ aii +..
    expr = bottom_up(expr, lambda e: e.doit())

    def mateq_expand(m1, m2):
        if not is_Matrix(m1) and not is_Matrix(m2):
            return Eq(m1, m2)
        if not is_Matrix(m1) or not is_Matrix(m2):
            return false
        if m1.shape != m2.shape:
            return false
        return And(*[Eq(e1, e2) for e1, e2 in zip(m1, m2)])

    def matne_expand(m1, m2):
        if not is_Matrix(m1) and not is_Matrix(m2):
            return Ne(m1, m2)
        if not is_Matrix(m1) or not is_Matrix(m2):
            return true
        if m1.shape != m2.shape:
            return true
        return Or(*[Ne(e1, e2) for e1, e2 in zip(m1, m2)])

    # expand matrix equation: [.., aij ,..] == [.., bij ,..] -> ..& aij == bij &..
    #                         [.., aij ,..] != [.., bij ,..] -> ..| aij != bij |..
    expr = expr.replace(Eq, mateq_expand)
    expr = expr.replace(Ne, matne_expand)

    return expr
Exemplo n.º 2
0
def futrig(e, **kwargs):
    """Return simplified ``e`` using Fu-like transformations.
    This is not the "Fu" algorithm. This is called by default
    from ``trigsimp``. By default, hyperbolics subexpressions
    will be simplified, but this can be disabled by setting
    ``hyper=False``.

    Examples
    ========

    >>> from sympy import trigsimp, tan, sinh, tanh
    >>> from sympy.simplify.trigsimp import futrig
    >>> from sympy.abc import x
    >>> trigsimp(1/tan(x)**2)
    tan(x)**(-2)

    >>> futrig(sinh(x)/tanh(x))
    cosh(x)

    """
    from sympy.simplify.fu import hyper_as_trig
    from sympy.simplify.simplify import bottom_up

    e = sympify(e)

    if not isinstance(e, Basic):
        return e

    if not e.args:
        return e

    old = e
    e = bottom_up(e, lambda x: _futrig(x, **kwargs))

    if kwargs.pop('hyper', True) and e.has(HyperbolicFunction):
        e, f = hyper_as_trig(e)
        e = f(_futrig(e))

    if e != old and e.is_Mul and e.args[0].is_Rational:
        # redistribute leading coeff on 2-arg Add
        e = Mul(*e.as_coeff_Mul())
    return e
Exemplo n.º 3
0
def exptrigsimp(expr):
    """
    Simplifies exponential / trigonometric / hyperbolic functions.

    Examples
    ========

    >>> from sympy import exptrigsimp, exp, cosh, sinh
    >>> from sympy.abc import z

    >>> exptrigsimp(exp(z) + exp(-z))
    2*cosh(z)
    >>> exptrigsimp(cosh(z) - sinh(z))
    exp(-z)
    """
    from sympy.simplify.fu import hyper_as_trig, TR2i
    from sympy.simplify.simplify import bottom_up

    def exp_trig(e):
        # select the better of e, and e rewritten in terms of exp or trig
        # functions
        choices = [e]
        if e.has(*_trigs):
            choices.append(e.rewrite(exp))
        choices.append(e.rewrite(cos))
        return min(*choices, key=count_ops)
    newexpr = bottom_up(expr, exp_trig)

    def f(rv):
        if not rv.is_Mul:
            return rv
        commutative_part, noncommutative_part = rv.args_cnc()
        # Since as_powers_dict loses order information,
        # if there is more than one noncommutative factor,
        # it should only be used to simplify the commutative part.
        if (len(noncommutative_part) > 1):
            return f(Mul(*commutative_part))*Mul(*noncommutative_part)
        rvd = rv.as_powers_dict()
        newd = rvd.copy()

        def signlog(expr, sign=1):
            if expr is S.Exp1:
                return sign, 1
            elif isinstance(expr, exp):
                return sign, expr.args[0]
            elif sign == 1:
                return signlog(-expr, sign=-1)
            else:
                return None, None

        ee = rvd[S.Exp1]
        for k in rvd:
            if k.is_Add and len(k.args) == 2:
                # k == c*(1 + sign*E**x)
                c = k.args[0]
                sign, x = signlog(k.args[1]/c)
                if not x:
                    continue
                m = rvd[k]
                newd[k] -= m
                if ee == -x*m/2:
                    # sinh and cosh
                    newd[S.Exp1] -= ee
                    ee = 0
                    if sign == 1:
                        newd[2*c*cosh(x/2)] += m
                    else:
                        newd[-2*c*sinh(x/2)] += m
                elif newd[1 - sign*S.Exp1**x] == -m:
                    # tanh
                    del newd[1 - sign*S.Exp1**x]
                    if sign == 1:
                        newd[-c/tanh(x/2)] += m
                    else:
                        newd[-c*tanh(x/2)] += m
                else:
                    newd[1 + sign*S.Exp1**x] += m
                    newd[c] += m

        return Mul(*[k**newd[k] for k in newd])
    newexpr = bottom_up(newexpr, f)

    # sin/cos and sinh/cosh ratios to tan and tanh, respectively
    if newexpr.has(HyperbolicFunction):
        e, f = hyper_as_trig(newexpr)
        newexpr = f(TR2i(e))
    if newexpr.has(TrigonometricFunction):
        newexpr = TR2i(newexpr)

    # can we ever generate an I where there was none previously?
    if not (newexpr.has(I) and not expr.has(I)):
        expr = newexpr
    return expr
Exemplo n.º 4
0
def exptrigsimp(expr, simplify=True):
    """
    Simplifies exponential / trigonometric / hyperbolic functions.
    When ``simplify`` is True (default) the expression obtained after the
    simplification step will be then be passed through simplify to
    precondition it so the final transformations will be applied.

    Examples
    ========

    >>> from sympy import exptrigsimp, exp, cosh, sinh
    >>> from sympy.abc import z

    >>> exptrigsimp(exp(z) + exp(-z))
    2*cosh(z)
    >>> exptrigsimp(cosh(z) - sinh(z))
    exp(-z)
    """
    from sympy.simplify.fu import hyper_as_trig, TR2i
    from sympy.simplify.simplify import bottom_up

    def exp_trig(e):
        # select the better of e, and e rewritten in terms of exp or trig
        # functions
        choices = [e]
        if e.has(*_trigs):
            choices.append(e.rewrite(exp))
        choices.append(e.rewrite(cos))
        return min(*choices, key=count_ops)
    newexpr = bottom_up(expr, exp_trig)

    if simplify:
        newexpr = newexpr.simplify()

    # conversion from exp to hyperbolic
    ex = newexpr.atoms(exp, S.Exp1)
    ex = [ei for ei in ex if 1/ei not in ex]
    ## sinh and cosh
    for ei in ex:
        e2 = ei**-2
        if e2 in ex:
            a = e2.args[0]/2 if not e2 is S.Exp1 else S.Half
            newexpr = newexpr.subs((e2 + 1)*ei, 2*cosh(a))
            newexpr = newexpr.subs((e2 - 1)*ei, 2*sinh(a))
    ## exp ratios to tan and tanh
    for ei in ex:
        n, d = ei - 1, ei + 1
        et = n/d
        etinv = d/n  # not 1/et or else recursion errors arise
        a = ei.args[0] if ei.func is exp else S.One
        if a.is_Mul or a is S.ImaginaryUnit:
            c = a.as_coefficient(I)
            if c:
                t = S.ImaginaryUnit*tan(c/2)
                newexpr = newexpr.subs(etinv, 1/t)
                newexpr = newexpr.subs(et, t)
                continue
        t = tanh(a/2)
        newexpr = newexpr.subs(etinv, 1/t)
        newexpr = newexpr.subs(et, t)

    # sin/cos and sinh/cosh ratios to tan and tanh, respectively
    if newexpr.has(HyperbolicFunction):
        e, f = hyper_as_trig(newexpr)
        newexpr = f(TR2i(e))
    if newexpr.has(TrigonometricFunction):
        newexpr = TR2i(newexpr)

    # can we ever generate an I where there was none previously?
    if not (newexpr.has(I) and not expr.has(I)):
        expr = newexpr
    return expr
Exemplo n.º 5
0
def exptrigsimp(expr, simplify=True):
    """
    Simplifies exponential / trigonometric / hyperbolic functions.
    When ``simplify`` is True (default) the expression obtained after the
    simplification step will be then be passed through simplify to
    precondition it so the final transformations will be applied.

    Examples
    ========

    >>> from sympy import exptrigsimp, exp, cosh, sinh
    >>> from sympy.abc import z

    >>> exptrigsimp(exp(z) + exp(-z))
    2*cosh(z)
    >>> exptrigsimp(cosh(z) - sinh(z))
    exp(-z)
    """
    from sympy.simplify.fu import hyper_as_trig, TR2i
    from sympy.simplify.simplify import bottom_up

    def exp_trig(e):
        # select the better of e, and e rewritten in terms of exp or trig
        # functions
        choices = [e]
        if e.has(*_trigs):
            choices.append(e.rewrite(exp))
        choices.append(e.rewrite(cos))
        return min(*choices, key=count_ops)

    newexpr = bottom_up(expr, exp_trig)

    if simplify:
        newexpr = newexpr.simplify()

    # conversion from exp to hyperbolic
    ex = newexpr.atoms(exp, S.Exp1)
    ex = [ei for ei in ex if 1 / ei not in ex]
    ## sinh and cosh
    for ei in ex:
        e2 = ei**-2
        if e2 in ex:
            a = e2.args[0] / 2 if not e2 is S.Exp1 else S.Half
            newexpr = newexpr.subs((e2 + 1) * ei, 2 * cosh(a))
            newexpr = newexpr.subs((e2 - 1) * ei, 2 * sinh(a))
    ## exp ratios to tan and tanh
    for ei in ex:
        n, d = ei - 1, ei + 1
        et = n / d
        etinv = d / n  # not 1/et or else recursion errors arise
        a = ei.args[0] if ei.func is exp else S.One
        if a.is_Mul or a is S.ImaginaryUnit:
            c = a.as_coefficient(I)
            if c:
                t = S.ImaginaryUnit * tan(c / 2)
                newexpr = newexpr.subs(etinv, 1 / t)
                newexpr = newexpr.subs(et, t)
                continue
        t = tanh(a / 2)
        newexpr = newexpr.subs(etinv, 1 / t)
        newexpr = newexpr.subs(et, t)

    # sin/cos and sinh/cosh ratios to tan and tanh, respectively
    if newexpr.has(HyperbolicFunction):
        e, f = hyper_as_trig(newexpr)
        newexpr = f(TR2i(e))
    if newexpr.has(TrigonometricFunction):
        newexpr = TR2i(newexpr)

    # can we ever generate an I where there was none previously?
    if not (newexpr.has(I) and not expr.has(I)):
        expr = newexpr
    return expr
Exemplo n.º 6
0
def exptrigsimp(expr):
    """
    Simplifies exponential / trigonometric / hyperbolic functions.

    Examples
    ========

    >>> from sympy import exptrigsimp, exp, cosh, sinh
    >>> from sympy.abc import z

    >>> exptrigsimp(exp(z) + exp(-z))
    2*cosh(z)
    >>> exptrigsimp(cosh(z) - sinh(z))
    exp(-z)
    """
    from sympy.simplify.fu import hyper_as_trig, TR2i
    from sympy.simplify.simplify import bottom_up

    def exp_trig(e):
        # select the better of e, and e rewritten in terms of exp or trig
        # functions
        choices = [e]
        if e.has(*_trigs):
            choices.append(e.rewrite(exp))
        choices.append(e.rewrite(cos))
        return min(*choices, key=count_ops)

    newexpr = bottom_up(expr, exp_trig)

    def f(rv):
        if not rv.is_Mul:
            return rv
        commutative_part, noncommutative_part = rv.args_cnc()
        # Since as_powers_dict loses order information,
        # if there is more than one noncommutative factor,
        # it should only be used to simplify the commutative part.
        if (len(noncommutative_part) > 1):
            return f(Mul(*commutative_part)) * Mul(*noncommutative_part)
        rvd = rv.as_powers_dict()
        newd = rvd.copy()

        def signlog(expr, sign=S.One):
            if expr is S.Exp1:
                return sign, S.One
            elif isinstance(expr, exp) or (expr.is_Pow
                                           and expr.base == S.Exp1):
                return sign, expr.exp
            elif sign is S.One:
                return signlog(-expr, sign=-S.One)
            else:
                return None, None

        ee = rvd[S.Exp1]
        for k in rvd:
            if k.is_Add and len(k.args) == 2:
                # k == c*(1 + sign*E**x)
                c = k.args[0]
                sign, x = signlog(k.args[1] / c)
                if not x:
                    continue
                m = rvd[k]
                newd[k] -= m
                if ee == -x * m / 2:
                    # sinh and cosh
                    newd[S.Exp1] -= ee
                    ee = 0
                    if sign == 1:
                        newd[2 * c * cosh(x / 2)] += m
                    else:
                        newd[-2 * c * sinh(x / 2)] += m
                elif newd[1 - sign * S.Exp1**x] == -m:
                    # tanh
                    del newd[1 - sign * S.Exp1**x]
                    if sign == 1:
                        newd[-c / tanh(x / 2)] += m
                    else:
                        newd[-c * tanh(x / 2)] += m
                else:
                    newd[1 + sign * S.Exp1**x] += m
                    newd[c] += m

        return Mul(*[k**newd[k] for k in newd])

    newexpr = bottom_up(newexpr, f)

    # sin/cos and sinh/cosh ratios to tan and tanh, respectively
    if newexpr.has(HyperbolicFunction):
        e, f = hyper_as_trig(newexpr)
        newexpr = f(TR2i(e))
    if newexpr.has(TrigonometricFunction):
        newexpr = TR2i(newexpr)

    # can we ever generate an I where there was none previously?
    if not (newexpr.has(I) and not expr.has(I)):
        expr = newexpr
    return expr