def assign_and_sample_proposals(proposed_boxes,
                                gt_boxes,
                                gt_classes,
                                num_samples_per_image=512,
                                mix_gt_boxes=True,
                                fg_fraction=0.25,
                                fg_iou_thresh=0.5,
                                bg_iou_thresh_hi=0.5,
                                bg_iou_thresh_lo=0.0):
    """Assigns the proposals with groundtruth classes and performs subsmpling.

  Given `proposed_boxes`, `gt_boxes`, and `gt_classes`, the function uses the
  following algorithm to generate the final `num_samples_per_image` RoIs.
    1. Calculates the IoU between each proposal box and each gt_boxes.
    2. Assigns each proposed box with a groundtruth class and box by choosing
       the largest IoU overlap.
    3. Samples `num_samples_per_image` boxes from all proposed boxes, and
       returns box_targets, class_targets, and RoIs.

  Args:
    proposed_boxes: a tensor of shape of [batch_size, N, 4]. N is the number
      of proposals before groundtruth assignment. The last dimension is the
      box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax]
      format.
    gt_boxes: a tensor of shape of [batch_size, MAX_NUM_INSTANCES, 4].
      The coordinates of gt_boxes are in the pixel coordinates of the scaled
      image. This tensor might have padding of values -1 indicating the invalid
      box coordinates.
    gt_classes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES]. This
      tensor might have paddings with values of -1 indicating the invalid
      classes.
    num_samples_per_image: a integer represents RoI minibatch size per image.
    mix_gt_boxes: a bool indicating whether to mix the groundtruth boxes before
      sampling proposals.
    fg_fraction: a float represents the target fraction of RoI minibatch that
      is labeled foreground (i.e., class > 0).
    fg_iou_thresh: a float represents the IoU overlap threshold for an RoI to be
      considered foreground (if >= fg_iou_thresh).
    bg_iou_thresh_hi: a float represents the IoU overlap threshold for an RoI to
      be considered background (class = 0 if overlap in [LO, HI)).
    bg_iou_thresh_lo: a float represents the IoU overlap threshold for an RoI to
      be considered background (class = 0 if overlap in [LO, HI)).

  Returns:
    sampled_rois: a tensor of shape of [batch_size, K, 4], representing the
      coordinates of the sampled RoIs, where K is the number of the sampled
      RoIs, i.e. K = num_samples_per_image.
    sampled_gt_boxes: a tensor of shape of [batch_size, K, 4], storing the
      box coordinates of the matched groundtruth boxes of the samples RoIs.
    sampled_gt_classes: a tensor of shape of [batch_size, K], storing the
      classes of the matched groundtruth boxes of the sampled RoIs.
    sampled_gt_indices: a tensor of shape of [batch_size, K], storing the
      indices of the sampled groudntruth boxes in the original `gt_boxes`
      tensor, i.e. gt_boxes[sampled_gt_indices[:, i]] = sampled_gt_boxes[:, i].
  """

    with tf.name_scope('sample_proposals'):
        if mix_gt_boxes:
            boxes = tf.concat([proposed_boxes, gt_boxes], axis=1)
        else:
            boxes = proposed_boxes

        (matched_gt_boxes, matched_gt_classes, matched_gt_indices, matched_iou,
         _) = box_matching(boxes, gt_boxes, gt_classes)

        positive_match = tf.greater(matched_iou, fg_iou_thresh)
        negative_match = tf.logical_and(
            tf.greater_equal(matched_iou, bg_iou_thresh_lo),
            tf.less(matched_iou, bg_iou_thresh_hi))
        ignored_match = tf.less(matched_iou, 0.0)

        # re-assign negatively matched boxes to the background class.
        matched_gt_classes = tf.where(negative_match,
                                      tf.zeros_like(matched_gt_classes),
                                      matched_gt_classes)
        matched_gt_indices = tf.where(negative_match,
                                      tf.zeros_like(matched_gt_indices),
                                      matched_gt_indices)

        sample_candidates = tf.logical_and(
            tf.logical_or(positive_match, negative_match),
            tf.logical_not(ignored_match))

        sampler = (
            balanced_positive_negative_sampler.BalancedPositiveNegativeSampler(
                positive_fraction=fg_fraction, is_static=True))

        batch_size, _ = sample_candidates.get_shape().as_list()
        sampled_indicators = []
        for i in range(batch_size):
            sampled_indicator = sampler.subsample(sample_candidates[i],
                                                  num_samples_per_image,
                                                  positive_match[i])
            sampled_indicators.append(sampled_indicator)
        sampled_indicators = tf.stack(sampled_indicators)
        _, sampled_indices = tf.nn.top_k(tf.cast(sampled_indicators,
                                                 dtype=tf.int32),
                                         k=num_samples_per_image,
                                         sorted=True)

        sampled_indices_shape = tf.shape(sampled_indices)
        batch_indices = (
            tf.expand_dims(tf.range(sampled_indices_shape[0]), axis=-1) *
            tf.ones([1, sampled_indices_shape[-1]], dtype=tf.int32))
        gather_nd_indices = tf.stack([batch_indices, sampled_indices], axis=-1)

        sampled_rois = tf.gather_nd(boxes, gather_nd_indices)
        sampled_gt_boxes = tf.gather_nd(matched_gt_boxes, gather_nd_indices)
        sampled_gt_classes = tf.gather_nd(matched_gt_classes,
                                          gather_nd_indices)
        sampled_gt_indices = tf.gather_nd(matched_gt_indices,
                                          gather_nd_indices)

        return (sampled_rois, sampled_gt_boxes, sampled_gt_classes,
                sampled_gt_indices)
Exemplo n.º 2
0
def _random_bernoulli(shape, probs, dtype=tf.int64, seed=None, name=None):
    """Returns samples from a Bernoulli distribution."""
    with tf1.name_scope(name, "random_bernoulli", [shape, probs]):
        probs = tf.convert_to_tensor(value=probs)
        random_uniform = tf.random.uniform(shape, dtype=probs.dtype, seed=seed)
        return tf.cast(tf.less(random_uniform, probs), dtype)
    def one_step(self, current_state, previous_kernel_results, seed=None):
        """Takes one step of the TransitionKernel.

    Args:
      current_state: `Tensor` or Python `list` of `Tensor`s representing the
        current state(s) of the Markov chain(s).
      previous_kernel_results: A (possibly nested) `tuple`, `namedtuple` or
        `list` of `Tensor`s representing internal calculations made within the
        previous call to this function (or as returned by `bootstrap_results`).
      seed: Optional, a seed for reproducible sampling.

    Returns:
      next_state: `Tensor` or Python `list` of `Tensor`s representing the
        next state(s) of the Markov chain(s).
      kernel_results: A (possibly nested) `tuple`, `namedtuple` or `list` of
        `Tensor`s representing internal calculations made within this function.
        This inculdes replica states.
    """

        # The code below propagates one step states of shape
        #  [n_replica] + batch_shape + event_shape.
        #
        # The step is done in three parts:
        #  1) Call one_step to transition states via a tempered version of
        #     self.target_log_prob_fn (see _replica_target_log_prob).
        #  2) Permute values in states
        #  3) Update state-dependent values, such as log_probs.
        #
        # We chose to swap states, rather than temperatures, because...
        # (i)  If swapping temperatures, you *still* have to swap log_probs to
        #      determine acceptance, as well as states (for kernel results).
        #      So it's just as difficult to swap temperatures.
        # (ii) If swapping temperatures, you have to take care to swap any user-
        #      supplied temperature related things (like step size).
        #      A-priori, we don't know what else will need to be swapped!
        # (iii)In both cases, the kernel results need to be updated in a non-trivial
        #      manner....so we either special-case, or use bootstrap.

        with tf.name_scope(mcmc_util.make_name(self.name, 'remc', 'one_step')):
            # Force a read in case the `inverse_temperatures` is a `tf.Variable`.
            inverse_temperatures = tf.convert_to_tensor(
                previous_kernel_results.inverse_temperatures,
                name='inverse_temperatures')

            target_log_prob_for_inner_kernel = _make_replica_target_log_prob_fn(
                self.target_log_prob_fn, inverse_temperatures)
            # Seed handling complexity is due to users possibly expecting an old-style
            # stateful seed to be passed to `self.make_kernel_fn`, and no seed
            # expected by `kernel.one_step`.
            # In other words:
            # - We try `make_kernel_fn` without a seed first; this is the future. The
            #   kernel will receive a seed later, as part of `one_step`.
            # - If the user code doesn't like that (Python complains about a missing
            #   required argument), we warn and fall back to the previous behavior.
            try:
                inner_kernel = self.make_kernel_fn(  # pylint: disable=not-callable
                    target_log_prob_for_inner_kernel)
            except TypeError as e:
                if 'argument' not in str(e):
                    raise
                warnings.warn(
                    'The `seed` argument to `ReplicaExchangeMC`s `make_kernel_fn` is '
                    'deprecated. `TransitionKernel` instances now receive seeds via '
                    '`one_step`.')
                inner_kernel = self.make_kernel_fn(  # pylint: disable=not-callable
                    target_log_prob_for_inner_kernel, self._seed_stream())

            # Now that we've constructed the TransitionKernel instance:
            # - If we were given a seed, we sanitize it to stateless and pass along
            #   to `kernel.one_step`. If it doesn't like that, we crash and propagate
            #   the error.  Rationale: The contract is stateless sampling given
            #   seed, and doing otherwise would not meet it.
            # - If not given a seed, we don't pass one along. This avoids breaking
            #   underlying kernels lacking a `seed` arg on `one_step`.
            # TODO(b/159636942): Clean up after 2020-09-20.
            if seed is not None:
                seed = samplers.sanitize_seed(seed)
                inner_seed, swap_seed, logu_seed = samplers.split_seed(
                    seed, n=3, salt='remc_one_step')
                inner_kwargs = dict(seed=inner_seed)
            else:
                if self._seed_stream.original_seed is not None:
                    warnings.warn(mcmc_util.SEED_CTOR_ARG_DEPRECATION_MSG)
                inner_kwargs = {}
                swap_seed, logu_seed = samplers.split_seed(self._seed_stream())
            [
                pre_swap_replica_states,
                pre_swap_replica_results,
            ] = inner_kernel.one_step(
                previous_kernel_results.post_swap_replica_states,
                previous_kernel_results.post_swap_replica_results,
                **inner_kwargs)

            pre_swap_replica_target_log_prob = _get_field(
                # These are tempered log probs (have been divided by temperature).
                pre_swap_replica_results,
                'target_log_prob')

            dtype = pre_swap_replica_target_log_prob.dtype
            replica_and_batch_shape = ps.shape(
                pre_swap_replica_target_log_prob)
            batch_shape = replica_and_batch_shape[1:]
            replica_and_batch_rank = ps.rank(pre_swap_replica_target_log_prob)
            num_replica = ps.size0(inverse_temperatures)

            inverse_temperatures = mcmc_util.left_justified_broadcast_to(
                inverse_temperatures, replica_and_batch_shape)

            # Now that each replica has done one_step, it is time to consider swaps.

            # swap.shape = [n_replica], and is a "once only" permutation, meaning it
            # is achievable by a sequence of pairwise permutations, where each element
            # is moved at most once.
            # E.g. if swaps = [1, 0, 2], we will consider swapping temperatures 0 and
            # 1, keeping 2 fixed.  This exact same swap is considered for *every*
            # batch member.  Of course some batch members may accept and some reject.
            try:
                swaps = tf.cast(
                    self.swap_proposal_fn(  # pylint: disable=not-callable
                        num_replica,
                        batch_shape=batch_shape,
                        seed=swap_seed,
                        step_count=previous_kernel_results.step_count),
                    dtype=tf.int32)
            except TypeError as e:
                if 'step_count' not in str(e):
                    raise
                warnings.warn(
                    'The `swap_proposal_fn` given to ReplicaExchangeMC did not accept '
                    'the `step_count` argument. Falling back to omitting the '
                    'argument. This fallback will be removed after 24-Oct-2020.'
                )
                swaps = tf.cast(
                    self.swap_proposal_fn(  # pylint: disable=not-callable
                        num_replica,
                        batch_shape=batch_shape,
                        seed=swap_seed),
                    dtype=tf.int32)

            null_swaps = mcmc_util.left_justified_expand_dims_like(
                tf.range(num_replica, dtype=swaps.dtype), swaps)
            swaps = _maybe_embed_swaps_validation(swaps, null_swaps,
                                                  self.validate_args)

            # Un-temper the log probs.  E.g., for replica k, at point x_k, this is
            # Log[p(x_k)], and *not* Log[p_x(x_k)] = Log[p(x_k)] * beta_k.
            untempered_pre_swap_replica_target_log_prob = (
                pre_swap_replica_target_log_prob / inverse_temperatures)

            # Since `swaps` is its own inverse permutation we automatically know the
            # swap counterpart: range(num_replica). We use this idea to compute the
            # acceptance in a vectorized manner at the cost of wasting roughly half
            # our computation. Although we could use `unique` to solve this problem,
            # we expect the cost of `unique` to be higher than the dozens of wasted
            # arithmetic calculations. Worse, it'd mean we need dynamic sized Tensors
            # (eg, using `tf.where(bool)`) and so we wouldn't be able to XLA compile.

            # Note: diffs would normally be "proposed - current" however energy is
            # flipped since `energy == -log_prob`.
            energy_diff = (untempered_pre_swap_replica_target_log_prob -
                           mcmc_util.index_remapping_gather(
                               untempered_pre_swap_replica_target_log_prob,
                               swaps,
                               name='gather_swap_tlp'))
            swapped_inverse_temperatures = mcmc_util.index_remapping_gather(
                inverse_temperatures, swaps, name='gather_swap_temps')
            inverse_temp_diff = swapped_inverse_temperatures - inverse_temperatures

            # If i and j are swapping, log_accept_ratio[] i and j are equal.
            log_accept_ratio = (energy_diff *
                                mcmc_util.left_justified_expand_dims_to(
                                    inverse_temp_diff, replica_and_batch_rank))

            log_accept_ratio = tf.where(tf.math.is_finite(log_accept_ratio),
                                        log_accept_ratio,
                                        tf.constant(-np.inf, dtype=dtype))

            # Produce Log[Uniform] draws that are identical at swapped indices.
            log_uniform = tf.math.log(
                samplers.uniform(shape=replica_and_batch_shape,
                                 dtype=dtype,
                                 seed=logu_seed))
            anchor_swaps = tf.minimum(swaps, null_swaps)
            log_uniform = mcmc_util.index_remapping_gather(
                log_uniform, anchor_swaps)

            is_swap_accepted_mask = tf.less(log_uniform,
                                            log_accept_ratio,
                                            name='is_swap_accepted_mask')

            def _swap_tensor(x):
                return mcmc_util.choose(
                    is_swap_accepted_mask,
                    mcmc_util.index_remapping_gather(x, swaps), x)

            post_swap_replica_states = [
                _swap_tensor(s) for s in pre_swap_replica_states
            ]

            expanded_null_swaps = mcmc_util.left_justified_broadcast_to(
                null_swaps, replica_and_batch_shape)
            is_swap_proposed = _compute_swap_notmatrix(
                # Broadcast both so they have shape [num_replica] + batch_shape.
                # This (i) makes them have same shape as is_swap_accepted, and
                # (ii) keeps shape consistent if someday swaps has a batch shape.
                expanded_null_swaps,
                mcmc_util.left_justified_broadcast_to(swaps,
                                                      replica_and_batch_shape))

            # To get is_swap_accepted in ordered position, we use
            # _compute_swap_notmatrix on current and next replica positions.
            post_swap_replica_position = _swap_tensor(expanded_null_swaps)

            is_swap_accepted = _compute_swap_notmatrix(
                post_swap_replica_position, expanded_null_swaps)

            if self._state_includes_replicas:
                post_swap_states = post_swap_replica_states
            else:
                post_swap_states = [s[0] for s in post_swap_replica_states]

            post_swap_replica_results = _make_post_swap_replica_results(
                pre_swap_replica_results, inverse_temperatures,
                swapped_inverse_temperatures, is_swap_accepted_mask,
                _swap_tensor)

            if mcmc_util.is_list_like(current_state):
                # We *always* canonicalize the states in the kernel results.
                states = post_swap_states
            else:
                states = post_swap_states[0]

            post_swap_kernel_results = ReplicaExchangeMCKernelResults(
                post_swap_replica_states=post_swap_replica_states,
                pre_swap_replica_results=pre_swap_replica_results,
                post_swap_replica_results=post_swap_replica_results,
                is_swap_proposed=is_swap_proposed,
                is_swap_accepted=is_swap_accepted,
                is_swap_proposed_adjacent=_sub_diag(is_swap_proposed),
                is_swap_accepted_adjacent=_sub_diag(is_swap_accepted),
                # Store the original pkr.inverse_temperatures in case its a
                # `tf.Variable`.
                inverse_temperatures=previous_kernel_results.
                inverse_temperatures,
                swaps=swaps,
                step_count=previous_kernel_results.step_count + 1,
                seed=samplers.zeros_seed() if seed is None else seed,
            )

            return states, post_swap_kernel_results
Exemplo n.º 4
0
 def _sample_n(self, n, seed=None):
     probs = self._probs_parameter_no_checks()
     new_shape = tf.concat([[n], tf.shape(probs)], 0)
     uniform = tf.random.uniform(new_shape, seed=seed, dtype=probs.dtype)
     sample = tf.less(uniform, probs)
     return tf.cast(sample, self.dtype)
Exemplo n.º 5
0
 def filter_fn(source):
     return tf.less(tf.shape(source)[0], max_len + 1)