Exemplo n.º 1
0
def fit(x_train, y_train, plot=True):
    #Data preprocessing
    if plot:
        display_data(x_train, y_train)
    x_train = x_train / 255.0
    x_train = x_train.reshape([-1, 784])
    y_train = one_hot(y_train)
    model = Sequential([
        Dense(512, input_dim=784),
        Activation('relu'),
        Dense(512),
        Activation('relu'),
        Dense(512),
        Activation('relu'),
        Dense(10),
        Activation('softmax')
    ])
    optimiser = keras.optimizers.Adam(learning_rate=0.01)
    model.compile(
        loss='categorical_crossentropy',  #Loss function for one hot inputs
        optimizer=optimiser,
        metrics=['accuracy'],
    )
    model.fit(x_train, y_train, validation_split=0.2, batch_size=64, epochs=20)
    return model
class NNQ:
    def __init__(self, input_space, action_space):

        #HyperParameters
        self.GAMMA = 0.95
        self.LEARNING_RATE = 0.002
        self.MEMORY_SIZE = 1000000
        self.BATCH_SIZE = 30
        self.EXPLORATION_MAX = 1.0
        self.EXPLORATION_MIN = 0.01
        self.EXPLORATION_DECAY = 0.997
        self.exploration_rate = self.EXPLORATION_MAX
        self.reward = 0

        self.actions = action_space
        #Experience Replay
        self.memory = deque(maxlen=self.MEMORY_SIZE)

        #Create the NN model
        self.model = Sequential()
        self.model.add(
            Dense(64, input_shape=(input_space, ), activation="relu"))
        self.model.add(Dense(64, activation="relu"))
        self.model.add(Dense(self.actions, activation="softmax"))
        self.model.compile(loss="mse", optimizer=Adam(lr=self.LEARNING_RATE))

    def act(self, state):
        #Exploration vs Exploitation
        if np.random.rand() < self.exploration_rate:
            return random.randrange(self.actions)

        q_values = self.model.predict(state)

        return np.argmax(q_values[0])

    def remember(self, state, action, reward, next_state, done):
        #in every action put in the memory
        self.memory.append((state, action, reward, next_state, done))

    def experience_replay(self):
        #When the memory is filled up take a batch and train the network
        if len(self.memory) < self.MEMORY_SIZE:
            return

        batch = random.sample(self.memory, self.BATCH_SIZE)
        for state, action, reward, next_state, terminal in batch:
            q_update = reward
            if not terminal:
                q_update = (
                    reward +
                    self.GAMMA * np.amax(self.model.predict(next_state)[0]))
            q_values = self.model.predict(state)
            q_values[0][action] = q_update
            self.model.fit(state, q_values, verbose=0)

        if self.exploration_rate > self.EXPLORATION_MIN:
            self.exploration_rate *= self.EXPLORATION_DECAY
Exemplo n.º 3
0
 def fitting(self, model: Sequential) -> Sequential:
     model.compile(
         optimizer="adam",
         loss="sparse_categorical_crossentropy",
         metrics=["accuracy"],
     )
     model.fit(self.data_source.x_train, self.data_source.y_train, epochs=10)
     # loss, accuracyを出力してくれる
     model.evaluate(self.data_source.x_test, self.data_source.y_test, verbose=2)
     return model
 def fitting(self, model: Sequential) -> Sequential:
     # 予測値はロジットや対数オッズ比で出力される
     predictions = model(self.data_source.x_train[:1]).numpy()
     # 確率に変換
     probability = tf.nn.softmax(predictions).numpy()
     # 損失関数。下記の書き方をすればそれぞれの標本についてクラスごとに損失のスカラを返す
     loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
         from_logits=True)
     # loss確認する場合はコメント外す
     # loss = loss_fn(mnist.y_train[:1], predictions).numpy()
     model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
     model.fit(self.data_source.x_train, self.data_source.y_train, epochs=5)
     model.evaluate(self.data_source.x_test,
                    self.data_source.y_test,
                    verbose=2)
     return model
Exemplo n.º 5
0
class Model:
    __batch_size = 100

    def __init__(self):
        self.model = Sequential([
            Dense(40, input_shape=(4, ), activation="relu"),
            Dense(40, activation="relu"),
            Dense(40, activation="relu"),
            Dense(4, activation="tanh")
        ])
        # TODO: xavier initialization?
        self.model.compile(loss=keras.losses.mean_squared_error,
                           optimizer=keras.optimizers.Adam(lr=0.001))

        self.memory = deque(maxlen=10000)

    def experience_replay(self):
        if len(self.memory) < self.__batch_size:
            return

        batch = random.sample(self.memory, self.__batch_size)
        states = np.vstack([state for state, _, _, _, _ in batch])
        next_states = np.vstack(
            [next_state for _, _, _, next_state, _ in batch])

        predicted_states = self.model.predict(states)
        predicted_next_states = self.model.predict(next_states)
        max_nex_state_values = np.max(predicted_next_states, 1)

        for index, (_, action, reward, _, terminal) in enumerate(batch):
            q_update = reward

            if not terminal:
                discount_factor = 0.95
                q_update += discount_factor * max_nex_state_values[index]

            learning_rate = 0.95
            predicted_states[index][action] = (
                (1 - learning_rate) * predicted_states[index][action] +
                learning_rate * q_update)
        self.model.fit(states, predicted_states, verbose=0)
Exemplo n.º 6
0
n_chars = len(alphabet)
n_in_seq_length = n_numbers * ceil(log10(largest + 1)) + n_numbers - 1
n_out_seq_length = ceil(log10(n_numbers * (largest + 1)))
n_batch = 100
n_epoch = 500
model = Sequential([
    LSTM(100, input_shape=(n_in_seq_length, n_chars)),
    RepeatVector(n_out_seq_length),
    LSTM(50, return_sequences=True),
    TimeDistributed(Dense(n_chars, activation='softmax'))
])

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
for i in range(n_epoch):
    x, y = generate_data(n_samples, largest, alphabet)
    model.fit(x, y, epochs=1, batch_size=n_batch)

model.save('training/keras_classifier.h5')

# evaluate on some new patterns
x, y = generate_data(n_samples, largest, alphabet)
result = model.predict(x, batch_size=n_batch, verbose=0)
# calculate error
expected = [invert(x, alphabet) for x in y]
predicted = [invert(x, alphabet) for x in result]
# show some examples
for i in range(20):
    print('Expected=%s, Predicted=%s' % (expected[i], predicted[i]))
Exemplo n.º 7
0
    #Adam optimisation is a stochastic gradient descent method
    #Can handle sparse gradients on noisy problems
    optimiser = keras.optimizers.Adam(learning_rate=0.01)

    #Training configuration
    model.compile(
        loss='categorical_crossentropy',  #Loss function for one hot inputs
        optimizer=optimiser,
        metrics=['accuracy'],
    )

    #Train the model
    print("Fit model on training data")
    history = model.fit(x_train,
                        y_train,
                        validation_split=0.2,
                        batch_size=64,
                        epochs=20)  #initially 15

    #Visualise model
    print("Model history keys")
    print(history.history.keys())

    #Plot model accuracy
    plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.title("Model Accuracy")
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')
    plt.legend(['train', 'test'], loc='upper left')
    plt.show()