def fit(x_train, y_train, plot=True): #Data preprocessing if plot: display_data(x_train, y_train) x_train = x_train / 255.0 x_train = x_train.reshape([-1, 784]) y_train = one_hot(y_train) model = Sequential([ Dense(512, input_dim=784), Activation('relu'), Dense(512), Activation('relu'), Dense(512), Activation('relu'), Dense(10), Activation('softmax') ]) optimiser = keras.optimizers.Adam(learning_rate=0.01) model.compile( loss='categorical_crossentropy', #Loss function for one hot inputs optimizer=optimiser, metrics=['accuracy'], ) model.fit(x_train, y_train, validation_split=0.2, batch_size=64, epochs=20) return model
class NNQ: def __init__(self, input_space, action_space): #HyperParameters self.GAMMA = 0.95 self.LEARNING_RATE = 0.002 self.MEMORY_SIZE = 1000000 self.BATCH_SIZE = 30 self.EXPLORATION_MAX = 1.0 self.EXPLORATION_MIN = 0.01 self.EXPLORATION_DECAY = 0.997 self.exploration_rate = self.EXPLORATION_MAX self.reward = 0 self.actions = action_space #Experience Replay self.memory = deque(maxlen=self.MEMORY_SIZE) #Create the NN model self.model = Sequential() self.model.add( Dense(64, input_shape=(input_space, ), activation="relu")) self.model.add(Dense(64, activation="relu")) self.model.add(Dense(self.actions, activation="softmax")) self.model.compile(loss="mse", optimizer=Adam(lr=self.LEARNING_RATE)) def act(self, state): #Exploration vs Exploitation if np.random.rand() < self.exploration_rate: return random.randrange(self.actions) q_values = self.model.predict(state) return np.argmax(q_values[0]) def remember(self, state, action, reward, next_state, done): #in every action put in the memory self.memory.append((state, action, reward, next_state, done)) def experience_replay(self): #When the memory is filled up take a batch and train the network if len(self.memory) < self.MEMORY_SIZE: return batch = random.sample(self.memory, self.BATCH_SIZE) for state, action, reward, next_state, terminal in batch: q_update = reward if not terminal: q_update = ( reward + self.GAMMA * np.amax(self.model.predict(next_state)[0])) q_values = self.model.predict(state) q_values[0][action] = q_update self.model.fit(state, q_values, verbose=0) if self.exploration_rate > self.EXPLORATION_MIN: self.exploration_rate *= self.EXPLORATION_DECAY
def fitting(self, model: Sequential) -> Sequential: model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) model.fit(self.data_source.x_train, self.data_source.y_train, epochs=10) # loss, accuracyを出力してくれる model.evaluate(self.data_source.x_test, self.data_source.y_test, verbose=2) return model
def fitting(self, model: Sequential) -> Sequential: # 予測値はロジットや対数オッズ比で出力される predictions = model(self.data_source.x_train[:1]).numpy() # 確率に変換 probability = tf.nn.softmax(predictions).numpy() # 損失関数。下記の書き方をすればそれぞれの標本についてクラスごとに損失のスカラを返す loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True) # loss確認する場合はコメント外す # loss = loss_fn(mnist.y_train[:1], predictions).numpy() model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) model.fit(self.data_source.x_train, self.data_source.y_train, epochs=5) model.evaluate(self.data_source.x_test, self.data_source.y_test, verbose=2) return model
class Model: __batch_size = 100 def __init__(self): self.model = Sequential([ Dense(40, input_shape=(4, ), activation="relu"), Dense(40, activation="relu"), Dense(40, activation="relu"), Dense(4, activation="tanh") ]) # TODO: xavier initialization? self.model.compile(loss=keras.losses.mean_squared_error, optimizer=keras.optimizers.Adam(lr=0.001)) self.memory = deque(maxlen=10000) def experience_replay(self): if len(self.memory) < self.__batch_size: return batch = random.sample(self.memory, self.__batch_size) states = np.vstack([state for state, _, _, _, _ in batch]) next_states = np.vstack( [next_state for _, _, _, next_state, _ in batch]) predicted_states = self.model.predict(states) predicted_next_states = self.model.predict(next_states) max_nex_state_values = np.max(predicted_next_states, 1) for index, (_, action, reward, _, terminal) in enumerate(batch): q_update = reward if not terminal: discount_factor = 0.95 q_update += discount_factor * max_nex_state_values[index] learning_rate = 0.95 predicted_states[index][action] = ( (1 - learning_rate) * predicted_states[index][action] + learning_rate * q_update) self.model.fit(states, predicted_states, verbose=0)
n_chars = len(alphabet) n_in_seq_length = n_numbers * ceil(log10(largest + 1)) + n_numbers - 1 n_out_seq_length = ceil(log10(n_numbers * (largest + 1))) n_batch = 100 n_epoch = 500 model = Sequential([ LSTM(100, input_shape=(n_in_seq_length, n_chars)), RepeatVector(n_out_seq_length), LSTM(50, return_sequences=True), TimeDistributed(Dense(n_chars, activation='softmax')) ]) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) for i in range(n_epoch): x, y = generate_data(n_samples, largest, alphabet) model.fit(x, y, epochs=1, batch_size=n_batch) model.save('training/keras_classifier.h5') # evaluate on some new patterns x, y = generate_data(n_samples, largest, alphabet) result = model.predict(x, batch_size=n_batch, verbose=0) # calculate error expected = [invert(x, alphabet) for x in y] predicted = [invert(x, alphabet) for x in result] # show some examples for i in range(20): print('Expected=%s, Predicted=%s' % (expected[i], predicted[i]))
#Adam optimisation is a stochastic gradient descent method #Can handle sparse gradients on noisy problems optimiser = keras.optimizers.Adam(learning_rate=0.01) #Training configuration model.compile( loss='categorical_crossentropy', #Loss function for one hot inputs optimizer=optimiser, metrics=['accuracy'], ) #Train the model print("Fit model on training data") history = model.fit(x_train, y_train, validation_split=0.2, batch_size=64, epochs=20) #initially 15 #Visualise model print("Model history keys") print(history.history.keys()) #Plot model accuracy plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title("Model Accuracy") plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()