Exemplo n.º 1
0
def validate(args, trainer, task, epoch_itr, subsets):
    """Evaluate the model on the validation set(s) and return the losses."""

    if args.fixed_validation_seed is not None:
        # set fixed seed for every validation
        utils.set_torch_seed(args.fixed_validation_seed)

    valid_losses = []
    for subset in subsets:
        logger.info('begin validation on "{}" subset'.format(subset))

        # Initialize data iterator
        itr = trainer.get_valid_iterator(subset).next_epoch_itr(shuffle=False)
        progress = progress_bar.progress_bar(
            itr,
            log_format=args.log_format,
            log_interval=args.log_interval,
            epoch=epoch_itr.epoch,
            prefix=f"valid on '{subset}' subset",
            tensorboard_logdir=(
                args.tensorboard_logdir if distributed_utils.is_master(args) else None
            ),
            default_log_format=("tqdm" if not args.no_progress_bar else "simple"),
        )

        # create a new root metrics aggregator so validation metrics
        # don't pollute other aggregators (e.g., train meters)
        with metrics.aggregate(new_root=True) as agg:
            for sample in progress:
                trainer.valid_step(sample)

        # log validation stats
        stats = get_valid_stats(args, trainer, agg.get_smoothed_values())
        progress.print(stats, tag=subset, step=trainer.get_num_updates())
        valid_losses.append(stats[args.best_checkpoint_metric])
    return valid_losses
Exemplo n.º 2
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(args.path),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    scorer = scoring.build_scorer(args, tgt_dict)

    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        prefix_tokens = None
        if args.prefix_size > 0:
            prefix_tokens = sample['target'][:, :args.prefix_size]

        constraints = None
        if "constraints" in sample:
            constraints = sample["constraints"]

        gen_timer.start()
        hypos = task.inference_step(generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints)
        num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            has_target = sample['target'] is not None

            # Remove padding
            if 'src_tokens' in sample['net_input']:
                src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
            else:
                src_tokens = None

            target_tokens = None
            if has_target:
                target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(
                        target_tokens,
                        args.remove_bpe,
                        escape_unk=True,
                        extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                    )

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not args.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str), file=output_file)
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str), file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:args.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                if not args.quiet:
                    score = hypo['score'] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file)
                    # detokenized hypothesis
                    print('D-{}\t{}\t{}'.format(sample_id, score, detok_hypo_str), file=output_file)
                    print('P-{}\t{}'.format(
                        sample_id,
                        ' '.join(map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)).tolist(),
                        ))
                    ), file=output_file)

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id,
                            ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment])
                        ), file=output_file)

                    if args.print_step:
                        print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file)

                    if getattr(args, 'retain_iter_history', False):
                        for step, h in enumerate(hypo['history']):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h['tokens'].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file)

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample["nsentences"] if "nsentences" in sample else sample['id'].numel()

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        if args.bpe and not args.sacrebleu:
            if args.remove_bpe:
                logger.warning("BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization")
            else:
                logger.warning("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization")
        # use print to be consistent with other main outputs: S-, H-, T-, D- and so on
        print(
            'Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()),
            file=output_file)

    return scorer
Exemplo n.º 3
0
 def _set_seed(self):
     # Set seed based on args.seed and the update number so that we get
     # reproducible results when resuming from checkpoints
     seed = self.args.seed + self.get_num_updates()
     utils.set_torch_seed(seed)
Exemplo n.º 4
0
def main(args):
    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions,
                                  encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(generator,
                                               models,
                                               sample,
                                               constraints=constraints)
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if args.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append((start_id + id, src_tokens_i, hypos, {
                    "constraints": constraints,
                    "time": translate_time / len(translations)
                }))

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results,
                                                   key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print("C-{}\t{}".format(
                        id_, tgt_dict.string(constraint, args.remove_bpe)))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                        generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id_, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id_, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id_,
                    ' '.join(
                        map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)
                                                           ).tolist(),
                        ))))
                if args.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(id_, alignment_str))

        # update running id_ counter
        start_id += len(inputs)

    logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format(
        time.time() - start_time, total_translate_time))
Exemplo n.º 5
0
def main(args):
    utils.import_user_module(args)

    assert (
        args.max_tokens is not None or args.max_sentences is not None
    ), "Must specify batch size either with --max-tokens or --max-sentences"

    metrics.reset()

    np.random.seed(args.seed)
    utils.set_torch_seed(args.seed)

    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

    # Print args
    logger.info(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(","):
        task.load_dataset(valid_sub_split, combine=False, epoch=1)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    logger.info(model)
    logger.info("task: {} ({})".format(args.task, task.__class__.__name__))
    logger.info("model: {} ({})".format(args.arch, model.__class__.__name__))
    logger.info(
        "criterion: {} ({})".format(args.criterion, criterion.__class__.__name__)
    )
    logger.info(
        "num. model params: {} (num. trained: {})".format(
            sum(p.numel() for p in model.parameters()),
            sum(p.numel() for p in model.parameters() if p.requires_grad),
        )
    )

    # (optionally) Configure quantization
    if args.quantization_config_path is not None:
        quantizer = quantization_utils.Quantizer(
            config_path=args.quantization_config_path,
            max_epoch=args.max_epoch,
            max_update=args.max_update,
        )
    else:
        quantizer = None

    # Build trainer
    if args.model_parallel_size == 1:
        trainer = Trainer(args, task, model, criterion, quantizer)
    else:
        raise NotImplementedError('here')

    logger.info(
        "training on {} devices (GPUs/TPUs)".format(args.distributed_world_size)
    )
    logger.info(
        "max tokens per GPU = {} and max sentences per GPU = {}".format(
            args.max_tokens, args.max_sentences
        )
    )

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = meters.StopwatchMeter()
    train_meter.start()

    while lr > args.min_lr and epoch_itr.next_epoch_idx <= max_epoch:
        # train for one epoch
        valid_losses, should_stop = train(args, trainer, task, epoch_itr)
        if should_stop:
            break

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.next_epoch_idx,
            # sharded data: get train iterator for next epoch
            load_dataset=task.has_sharded_data("train"),
        )
    train_meter.stop()
    logger.info("done training in {:.1f} seconds".format(train_meter.sum))