def validate(args, trainer, task, epoch_itr, subsets): """Evaluate the model on the validation set(s) and return the losses.""" if args.fixed_validation_seed is not None: # set fixed seed for every validation utils.set_torch_seed(args.fixed_validation_seed) valid_losses = [] for subset in subsets: logger.info('begin validation on "{}" subset'.format(subset)) # Initialize data iterator itr = trainer.get_valid_iterator(subset).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, epoch=epoch_itr.epoch, prefix=f"valid on '{subset}' subset", tensorboard_logdir=( args.tensorboard_logdir if distributed_utils.is_master(args) else None ), default_log_format=("tqdm" if not args.no_progress_bar else "simple"), ) # create a new root metrics aggregator so validation metrics # don't pollute other aggregators (e.g., train meters) with metrics.aggregate(new_root=True) as agg: for sample in progress: trainer.valid_step(sample) # log validation stats stats = get_valid_stats(args, trainer, agg.get_smoothed_values()) progress.print(stats, tag=subset, step=trainer.get_num_updates()) valid_losses.append(stats[args.best_checkpoint_metric]) return valid_losses
def _main(args, output_file): logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, stream=output_file, ) logger = logging.getLogger('generate') utils.import_user_module(args) if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 12000 logger.info(args) # Fix seed for stochastic decoding if args.seed is not None and not args.no_seed_provided: np.random.seed(args.seed) utils.set_torch_seed(args.seed) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) # Set dictionaries try: src_dict = getattr(task, 'source_dictionary', None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary # Load ensemble logger.info('loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( utils.split_paths(args.path), arg_overrides=eval(args.model_overrides), task=task, suffix=getattr(args, "checkpoint_suffix", ""), ) # Optimize ensemble for generation for model in models: model.prepare_for_inference_(args) if args.fp16: model.half() if use_cuda: model.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, default_log_format=('tqdm' if not args.no_progress_bar else 'none'), ) # Initialize generator gen_timer = StopwatchMeter() generator = task.build_generator(models, args) # Handle tokenization and BPE tokenizer = encoders.build_tokenizer(args) bpe = encoders.build_bpe(args) def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x scorer = scoring.build_scorer(args, tgt_dict) num_sentences = 0 has_target = True wps_meter = TimeMeter() for sample in progress: sample = utils.move_to_cuda(sample) if use_cuda else sample if 'net_input' not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample['target'][:, :args.prefix_size] constraints = None if "constraints" in sample: constraints = sample["constraints"] gen_timer.start() hypos = task.inference_step(generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints) num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample['id'].tolist()): has_target = sample['target'] is not None # Remove padding if 'src_tokens' in sample['net_input']: src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad()) else: src_tokens = None target_tokens = None if has_target: target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu() # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id) target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id) else: if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) else: src_str = "" if has_target: target_str = tgt_dict.string( target_tokens, args.remove_bpe, escape_unk=True, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) src_str = decode_fn(src_str) if has_target: target_str = decode_fn(target_str) if not args.quiet: if src_dict is not None: print('S-{}\t{}'.format(sample_id, src_str), file=output_file) if has_target: print('T-{}\t{}'.format(sample_id, target_str), file=output_file) # Process top predictions for j, hypo in enumerate(hypos[i][:args.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) detok_hypo_str = decode_fn(hypo_str) if not args.quiet: score = hypo['score'] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file) # detokenized hypothesis print('D-{}\t{}\t{}'.format(sample_id, score, detok_hypo_str), file=output_file) print('P-{}\t{}'.format( sample_id, ' '.join(map( lambda x: '{:.4f}'.format(x), # convert from base e to base 2 hypo['positional_scores'].div_(math.log(2)).tolist(), )) ), file=output_file) if args.print_alignment: print('A-{}\t{}'.format( sample_id, ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment]) ), file=output_file) if args.print_step: print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file) if getattr(args, 'retain_iter_history', False): for step, h in enumerate(hypo['history']): _, h_str, _ = utils.post_process_prediction( hypo_tokens=h['tokens'].int().cpu(), src_str=src_str, alignment=None, align_dict=None, tgt_dict=tgt_dict, remove_bpe=None, ) print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file) # Score only the top hypothesis if has_target and j == 0: if align_dict is not None or args.remove_bpe is not None: # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True) hypo_tokens = tgt_dict.encode_line(detok_hypo_str, add_if_not_exist=True) if hasattr(scorer, 'add_string'): scorer.add_string(target_str, detok_hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) progress.log({'wps': round(wps_meter.avg)}) num_sentences += sample["nsentences"] if "nsentences" in sample else sample['id'].numel() logger.info('NOTE: hypothesis and token scores are output in base 2') logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg)) if has_target: if args.bpe and not args.sacrebleu: if args.remove_bpe: logger.warning("BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization") else: logger.warning("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization") # use print to be consistent with other main outputs: S-, H-, T-, D- and so on print( 'Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()), file=output_file) return scorer
def _set_seed(self): # Set seed based on args.seed and the update number so that we get # reproducible results when resuming from checkpoints seed = self.args.seed + self.get_num_updates() utils.set_torch_seed(seed)
def main(args): start_time = time.time() total_translate_time = 0 utils.import_user_module(args) if args.buffer_size < 1: args.buffer_size = 1 if args.max_tokens is None and args.max_sentences is None: args.max_sentences = 1 assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert not args.max_sentences or args.max_sentences <= args.buffer_size, \ '--max-sentences/--batch-size cannot be larger than --buffer-size' logger.info(args) # Fix seed for stochastic decoding if args.seed is not None and not args.no_seed_provided: np.random.seed(args.seed) utils.set_torch_seed(args.seed) use_cuda = torch.cuda.is_available() and not args.cpu # Setup task, e.g., translation task = tasks.setup_task(args) # Load ensemble logger.info('loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(os.pathsep), arg_overrides=eval(args.model_overrides), task=task, suffix=getattr(args, "checkpoint_suffix", ""), ) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Optimize ensemble for generation for model in models: model.prepare_for_inference_(args) if args.fp16: model.half() if use_cuda: model.cuda() # Initialize generator generator = task.build_generator(models, args) # Handle tokenization and BPE tokenizer = encoders.build_tokenizer(args) bpe = encoders.build_bpe(args) def encode_fn(x): if tokenizer is not None: x = tokenizer.encode(x) if bpe is not None: x = bpe.encode(x) return x def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models]) if args.constraints: logger.warning( "NOTE: Constrained decoding currently assumes a shared subword vocabulary." ) if args.buffer_size > 1: logger.info('Sentence buffer size: %s', args.buffer_size) logger.info('NOTE: hypothesis and token scores are output in base 2') logger.info('Type the input sentence and press return:') start_id = 0 for inputs in buffered_read(args.input, args.buffer_size): results = [] for batch in make_batches(inputs, args, task, max_positions, encode_fn): bsz = batch.src_tokens.size(0) src_tokens = batch.src_tokens src_lengths = batch.src_lengths constraints = batch.constraints if use_cuda: src_tokens = src_tokens.cuda() src_lengths = src_lengths.cuda() if constraints is not None: constraints = constraints.cuda() sample = { 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, }, } translate_start_time = time.time() translations = task.inference_step(generator, models, sample, constraints=constraints) translate_time = time.time() - translate_start_time total_translate_time += translate_time list_constraints = [[] for _ in range(bsz)] if args.constraints: list_constraints = [unpack_constraints(c) for c in constraints] for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) constraints = list_constraints[i] results.append((start_id + id, src_tokens_i, hypos, { "constraints": constraints, "time": translate_time / len(translations) })) # sort output to match input order for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]): if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) print('S-{}\t{}'.format(id_, src_str)) print("W-{}\t{:.3f}\tseconds".format(id_, info["time"])) for constraint in info["constraints"]: print("C-{}\t{}".format( id_, tgt_dict.string(constraint, args.remove_bpe))) # Process top predictions for hypo in hypos[:min(len(hypos), args.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, extra_symbols_to_ignore=get_symbols_to_strip_from_output( generator), ) detok_hypo_str = decode_fn(hypo_str) score = hypo['score'] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print('H-{}\t{}\t{}'.format(id_, score, hypo_str)) # detokenized hypothesis print('D-{}\t{}\t{}'.format(id_, score, detok_hypo_str)) print('P-{}\t{}'.format( id_, ' '.join( map( lambda x: '{:.4f}'.format(x), # convert from base e to base 2 hypo['positional_scores'].div_(math.log(2) ).tolist(), )))) if args.print_alignment: alignment_str = " ".join( ["{}-{}".format(src, tgt) for src, tgt in alignment]) print('A-{}\t{}'.format(id_, alignment_str)) # update running id_ counter start_id += len(inputs) logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format( time.time() - start_time, total_translate_time))
def main(args): utils.import_user_module(args) assert ( args.max_tokens is not None or args.max_sentences is not None ), "Must specify batch size either with --max-tokens or --max-sentences" metrics.reset() np.random.seed(args.seed) utils.set_torch_seed(args.seed) if distributed_utils.is_master(args): checkpoint_utils.verify_checkpoint_directory(args.save_dir) # Print args logger.info(args) # Setup task, e.g., translation, language modeling, etc. task = tasks.setup_task(args) # Load valid dataset (we load training data below, based on the latest checkpoint) for valid_sub_split in args.valid_subset.split(","): task.load_dataset(valid_sub_split, combine=False, epoch=1) # Build model and criterion model = task.build_model(args) criterion = task.build_criterion(args) logger.info(model) logger.info("task: {} ({})".format(args.task, task.__class__.__name__)) logger.info("model: {} ({})".format(args.arch, model.__class__.__name__)) logger.info( "criterion: {} ({})".format(args.criterion, criterion.__class__.__name__) ) logger.info( "num. model params: {} (num. trained: {})".format( sum(p.numel() for p in model.parameters()), sum(p.numel() for p in model.parameters() if p.requires_grad), ) ) # (optionally) Configure quantization if args.quantization_config_path is not None: quantizer = quantization_utils.Quantizer( config_path=args.quantization_config_path, max_epoch=args.max_epoch, max_update=args.max_update, ) else: quantizer = None # Build trainer if args.model_parallel_size == 1: trainer = Trainer(args, task, model, criterion, quantizer) else: raise NotImplementedError('here') logger.info( "training on {} devices (GPUs/TPUs)".format(args.distributed_world_size) ) logger.info( "max tokens per GPU = {} and max sentences per GPU = {}".format( args.max_tokens, args.max_sentences ) ) # Load the latest checkpoint if one is available and restore the # corresponding train iterator extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer) # Train until the learning rate gets too small max_epoch = args.max_epoch or math.inf lr = trainer.get_lr() train_meter = meters.StopwatchMeter() train_meter.start() while lr > args.min_lr and epoch_itr.next_epoch_idx <= max_epoch: # train for one epoch valid_losses, should_stop = train(args, trainer, task, epoch_itr) if should_stop: break # only use first validation loss to update the learning rate lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0]) epoch_itr = trainer.get_train_iterator( epoch_itr.next_epoch_idx, # sharded data: get train iterator for next epoch load_dataset=task.has_sharded_data("train"), ) train_meter.stop() logger.info("done training in {:.1f} seconds".format(train_meter.sum))