Exemplo n.º 1
0
    def track(self, model: BaseModel, **kwargs):
        """ Add current model predictions (usually the result of a batch) to the tracking
        """
        super().track(model)

        outputs = model.get_output()
        targets = model.get_labels()

        # Mask ignored label
        mask = targets != self._ignore_label
        outputs = outputs[mask]
        targets = targets[mask]

        outputs = self._convert(outputs)
        targets = self._convert(targets)

        if len(targets) == 0:
            return

        assert outputs.shape[0] == len(targets)
        self._confusion_matrix.count_predicted_batch(targets, np.argmax(outputs, 1))

        self._acc = 100 * self._confusion_matrix.get_overall_accuracy()
        self._macc = 100 * self._confusion_matrix.get_mean_class_accuracy()
        self._miou = 100 * self._confusion_matrix.get_average_intersection_union()
    def track(self, model: BaseModel, **kwargs):
        """ Add current model predictions (usually the result of a batch) to the tracking
        """
        super().track(model)

        outputs = model.get_output()
        targets = model.get_labels()

        # Mask ignored label
        mask = targets != self._ignore_label
        outputs = outputs[mask]
        targets = targets[mask]

        outputs = SegmentationTracker.detach_tensor(outputs)
        targets = SegmentationTracker.detach_tensor(targets)
        if not torch.is_tensor(targets):
            targets = torch.from_numpy(targets)
        self._ap_meter.add(outputs,
                           F.one_hot(targets, self._num_classes).bool())

        outputs = self._convert(outputs)
        targets = self._convert(targets)

        if len(targets) == 0:
            return

        assert outputs.shape[0] == len(targets)
        self._confusion_matrix.count_predicted_batch(targets,
                                                     np.argmax(outputs, 1))

        self._acc = 100 * self._confusion_matrix.get_overall_accuracy()
        self._macc = 100 * self._confusion_matrix.get_mean_class_accuracy()
        self._miou = 100 * self._confusion_matrix.get_average_intersection_union(
        )
        self._map = 100 * self._ap_meter.value().mean().item()