Exemplo n.º 1
0
def get_SExt_assoc_files(pepe):
    """
    It creates the associated catalogues with
    the detections to be included in the analysis.
    """

    for ii in range(7):
        for jj in range(4):
            for kk in range(4):
                cat = root + '/f0%i/alhambra.F0%iP0%iC0%i.ColorProBPZ.cat' % (
                    ii + 2, ii + 2, jj + 1, kk + 1)
                if os.path.exists(cat):
                    ids = U.get_str(cat, 0)
                    x, y, ar, ra, dec, mm = U.get_data(cat,
                                                       (6, 7, 8, 4, 5, 65))
                    nameout = root + '/f0%i/alhambra.F0%iP0%iC0%i.ColorProBPZ.coo' % (
                        ii + 2, ii + 2, jj + 1, kk + 1)
                    good = U.less_equal(abs(mm), 23.0)
                    ids = U.compress(good, (ids))
                    x, y, ar, ra, dec, mm = U.multicompress(
                        good, (x, y, ar, ra, dec, mm))
                    ne = len(x)
                    fileout = open(nameout, 'w')
                    fileout.write('#  X  Y  AREA  ID  RA  DEC  F814W  \n')
                    print 'Analyzing ', cat
                    for ss in range(ne):
                        linea = '%.3f   %.3f   %i   %s    %f   %f   %.2f  \n' % (
                            x[ss], y[ss], ar[ss], ids[ss], ra[ss], dec[ss],
                            mm[ss])
                        fileout.write(linea)
                    fileout.close()
Exemplo n.º 2
0
def remove_detections_bysegmmaps(field, pointing, ccd):
    """
    It uses the segmentation-maps to remove fake detections
    when masking out saturated stars.
----
import alhambra_fakedets as AF
AF.remove_detections_bysegmmaps(2,1,1)

    """
    root = '/Volumes/amb22/catalogos/reduction_v4f/f0%i/' % (field)
    root2images = '/Volumes/amb22/imagenes/f0%i/' % (field)
    catalog = root + 'f0%ip0%i_colorproext_%i_ISO.irmsF814W.free.cat' % (
        field, pointing, ccd)
    ids, x, y, area = U.get_data(catalog, (0, 3, 4, 5))
    dim = len(ids)
    valor = U.zeros(dim)
    ima1 = root2images + 'f0%ip0%i_F814W_%i.swp.seg.fits' % (field, pointing,
                                                             ccd)
    ima2 = root2images + 'f0%ip0%i_F814W_%i.swp.segnomask.fits' % (
        field, pointing, ccd)
    segm1 = pyfits.open(ima1)[0].data
    segm2 = pyfits.open(ima2)[0].data
    for ii in range(dim):
        xo = x[ii]
        yo = y[ii]
        dimx = U.shape(datos[yo - size:yo + size, xo - size:xo + size])[1]
        dimy = U.shape(datos[yo - size:yo + size, xo - size:xo + size])[0]
        perc[ii] = (datos[yo - size:yo + size, xo - size:xo + size].sum() /
                    (dimx * dimy * 1.))

    # Defining the sample to be keep.
    good = U.greater(valor, 0)
    idr = U.compress(good, ids)
    dim2 = len(idr)
    print 'Dimensions: Original: %i, Final: %i, Excluded: %i detections. ' % (
        dim, dim2, dim - dim2)
    finalcat = root + 'f0%ip0%i_colorproext_%i_ISO.irmsF814W.free.cat' % (
        field, pointing, ccd)
    data1 = coeio.loaddata(catalog)  # Loading the whole catalog content.
    head = coeio.loadheader(catalog)
    data2 = data1[good, :]
    coeio.savedata(data2, finalcat, dir="",
                   header=head)  # Saving & creating a new catalog.
Exemplo n.º 3
0
def remove_fakeabsorptions_F814W(field, pointing, ccd):
    """
    Using the rmsweight images, it gets rid of
    detections with imrs_F814W < 0.5.
    -------------------------------------------
import alhambra_fakedets as AF
AF.remove_fakeabsorptions_F814W(2,1,1)

    """
    root = '/Volumes/amb22/catalogos/reduction_v4f/f0%i/' % (field)
    catalog = root + 'f0%ip0%i_colorproext_%i_ISO.cat' % (field, pointing, ccd)
    ids, x, y, area = U.get_data(catalog, (0, 3, 4, 5))
    dim = len(ids)
    perc = U.zeros(dim)
    # Opening F814W Weight image
    ima = alh.alhambra_invrmsimagelist(field, pointing, ccd)[-1]
    datos = pyfits.open(ima)[0].data
    for ii in range(dim):
        if area[ii] > 1:
            size = int(round(U.sqrt(area[ii]) / 2.))
            xo = x[ii]
            yo = y[ii]
            dimx = U.shape(datos[yo - size:yo + size, xo - size:xo + size])[1]
            dimy = U.shape(datos[yo - size:yo + size, xo - size:xo + size])[0]
            perc[ii] = (datos[yo - size:yo + size, xo - size:xo + size].sum() /
                        (dimx * dimy * 1.))

    # Defining the sample to be keep.
    good = U.greater(perc, 0.5)
    idr = U.compress(good, ids)
    dim2 = len(idr)
    print 'Dimensions: Original: %i, Final: %i, Excluded: %i detections. ' % (
        dim, dim2, dim - dim2)
    finalcat = root + 'f0%ip0%i_colorproext_%i_ISO.irmsF814W.free.cat' % (
        field, pointing, ccd)
    data1 = coeio.loaddata(catalog)  # Loading the whole catalog content.
    head = coeio.loadheader(catalog)
    data2 = data1[good, :]
    coeio.savedata(data2, finalcat, dir="",
                   header=head)  # Saving & creating a new catalog.
Exemplo n.º 4
0
def match_spz_sample(cluster): # TO CHECK
       
    finalcat1 = catalog2[:-3]+'CLASH.redu.cat'
    finalcat2 = catalog2[:-3]+'nada.cat'
    # if not os.path.exists(finalcat1):
    if not os.path.exists(finalcat2):
        # print 'Final catalog does not exist yet.'                           
        if os.path.exists(catalog1) and os.path.exists(catalog2):
            # It matches up detections to its Spectroscopic Sample.
            # Reading specz catalog
            print 'Reading info1 before matching...'
            speczsample = catalog1
            idsp,xsp,ysp = U.get_data(speczsample,(0,3,4))
            goodsp = U.greater_equal(xsp,1500) * U.less_equal(xsp,3500)
            goodsp *= U.greater_equal(ysp,1500) * U.less_equal(ysp,3500)
            idsp,xsp,ysp = U.multicompress(goodsp,(idsp,xsp,ysp))
            print 'New dimension for specz catalogue: ',len(xsp)
            # rasp,decsp,xsp,ysp,zsp = get_data(speczsample,(0,1,2,3,4))
            # xsp,ysp,zsp = get_data(speczsample,(1,2,7))
            ####### idsp = U.arange(len(xsp))+1 
            # idsp = arange(len(rasp))+1
            # Reading ColorPro catalog
            print 'Reading info2 before matching...'
            idcol,xcol,ycol = U.get_data(catalog2,(0,3,4))
            print 'Dimension for input catalogue before compressing: ',len(idcol)
            gsp = U.greater_equal(xcol,1500) * U.less_equal(xcol,3500)
            gsp *= U.greater_equal(ycol,1500) * U.less_equal(ycol,3500)
            idcol,xcol,ycol = U.multicompress(gsp,(idcol,xcol,ycol))
            print 'Dimension for input catalogue after compressing: ',len(idcol)
            # Using "matching_vects" to match up samples...
            print 'Matching samples....'
            pepe = CT.matching_vects(idcol,xcol,ycol,idsp,xsp,ysp,1.1)   # We use now X,Y instead RA,Dec
            # Compressing matches for ColorPro...
            print 'Compressing matches...'
            matchidcol = pepe[:,0].astype(int)
            gdet_col = U.greater(matchidcol,0)  # Excluding 0's (non matched detections)
            matchidcol = U.compress(gdet_col,(matchidcol))
            # Compressing matches for Spectroscopic...
            matchidsp = pepe[:,1].astype(int)
            gdet_spz = U.greater(matchidsp,0)   # Excluding 0's (non matched detections)
            matchidsp = U.compress(gdet_spz,(matchidsp))
            print 'len(idcol)',len(idcol)
            print 'len(idsp)',len(idsp)
            if len(matchidcol) == len(matchidsp):
                print 'Creating idredu & zsredu '
                print 'Dimension of matchidsp ',len(matchidsp)
                idredu = U.zeros(len(matchidsp))
                idspredu = U.zeros(len(matchidsp))
                for ii in range(len(matchidsp)):
                    colindex = A.id2pos(idcol,matchidcol[ii]) # Position for Index idcol
                    spzindex = A.id2pos(idsp,matchidsp[ii])   # Position for Index idsp
                    idredu[ii] = idcol[colindex]  # ID for ColorPro
                    idspredu[ii] = idsp[spzindex]    # Specz for Specz
                    
                # A new smaller catalog will be created containing specz info as an extra column.
                print 'Selecting by rows... ' 
                finalcat1 = catalog2[:-3]+'UDF.redu.cat'
                finalcat2 = catalog2[:-3]+'CLASH.redu.cat'
                U.put_data(catalog2[:-3]+'idsfrommatch.txt',(idredu,idspredu))
                A.select_rows_bylist_sorted(catalog1,idspredu,finalcat1)
                A.select_rows_bylist_sorted(catalog2,idredu,finalcat2)               
Exemplo n.º 5
0
def check_rms_SPLUS(segmentation,photometry,minrad,maxrad,totnum,plots,verbose):

    """
    It describes the photometric noise in images by launching apertures
    in blank areas and describing the area vs rms dependency.

    Philosophy:
    Several apertures (of random radius and positions) will be created (over blank areas) on 
    a 'segmentation' image to estimate the real photometric error of an input 'photometry' image. 
    --------
    segmentation: Segmentation-like image (SExtractor output) used to select 'blank' areas.
    photometry:   scientific image over which estimate the real photometric errors      
    minrad,maxrad = minimun & maximum radius of the used apertures (pixels).
    totnum = total number of apertures.
    area,rms = final outputs.
    ---------
    USAGE:

---------
import script_dcluster_tools as to
segmentation = 'f814.seg.fits'
photometry   = 'f814.fits'
apertures,finalbackg,finalmeans,fluxes = to.check_rms_JPLUS(segmentation,photometry,1,21,5.0e+04,'yes',False)
----

    """ 
    if not os.path.exists(segmentation):
       print
       print 'Image %s does not exist!' %(segmentation)
       sys.exist()

    if not os.path.exists(photometry):
       print
       print 'Image %s does not exist!' %(photometry)
       sys.exist()
    
    if verbose==True: verba=1
    else: verba=0	       

    # Reading data from images
    if photometry[:-2]=='fz':
       photima = fits.open(photometry)[1].data
    else:
       photima = fits.open(photometry)[0].data
    
    if segmentation[:-2]=='fz':
       segima  = fits.open(segmentation)[1].data  
    else:
       segima  = fits.open(segmentation)[0].data

    # Final root where to save the data
    final_path = os.path.os.path.dirname(photometry)
    base_name = os.path.os.path.basename(photometry)
    len_extension = len(base_name.split('.')[-1])+1
    file_root = final_path+'/Apertures/%s'%(base_name[:-len_extension])
       
    # Physical limits (pixel) for the segmentation image.
    xGC = N.shape(segima)[1]/2.
    yGC = N.shape(segima)[0]/2.
    # For CLASH, due to the rotating frames, a maximum radius is set.
    min_maxim_radius = min([xGC,yGC])
    radialmax = min_maxim_radius # Maximum radial distance to the center [pixels]
    
    # Here the random position (X,Y) are limited in range.
    minpix_X = 1500 
    maxpix_X = N.shape(segima)[1]-1500 
    minpix_Y = 1500 
    maxpix_Y = N.shape(segima)[0]-1500 
    binhisto = 100  
    # Final vector with positions.
    x_values = N.arange(minpix_X,maxpix_X,1)
    y_values = N.arange(minpix_Y,maxpix_Y,1)
    # Total dimension for the input variables.
    maxdim = int(20*(10.+(4*(((maxrad)*(maxrad+1))/2.))))
    # Defining other variables.
    XX = N.zeros((maxdim),float)
    YY = N.zeros((maxdim),float)
    XO = N.zeros((maxdim),float)
    YO = N.zeros((maxdim),float)
    RR = N.zeros(totnum)
    # Range of apertures to be launched.
    apertures = N.arange(minrad,maxrad,1)
    n_apertures = len(apertures)
    # Length definition for the final outputs.
    finalbackg = N.zeros(n_apertures,'float64')
    finalmeans = N.zeros(n_apertures,'float64') 
    gausshisto = N.zeros((binhisto,2*n_apertures),dtype='float64') 
    # Starting the analysis.
    mmm = 0
    for app in range(n_apertures):
        raper = apertures[app] 
        # minrad = maxrad = raper
        if verba:
           print 'Interation %i out of %i ' %(app+1,n_apertures)
           print '-------------------------'
            
        # New temporal variables (erased in every loop).
        fluxes = N.zeros(totnum,dtype='float64')
        sbackg = N.zeros(totnum,dtype='float64') 
        ff = -1
        
        # Now it runs until it gets "totnum" measurements.
        hh = -1
        contador = 0
        while contador < (totnum):
            kk = -1
            # Random x,y numbers to estimate the position
            # to place the aperture.
            xo = N.random.random_integers(minpix_X,maxpix_X)  
            yo = N.random.random_integers(minpix_Y,maxpix_Y)
            if verba: print 'xo,yo',xo,yo
            # Corresponding radial distance to the center.
            tempradii = N.sqrt((xo-xGC)*(xo-xGC)+(yo-yGC)*(yo-yGC))
            if tempradii < (radialmax+1):
               # Now it is computed the shape of the aperture. 
               Xr = N.zeros((raper*raper),float)
               Yr = N.zeros((raper*raper),float)
               for ii in range(raper):
                   xvalue = xo+ii
                   for jj in range(raper):
                       kk += 1
                       yvalue = yo+jj
                       Xr[kk] = xvalue
                       Yr[kk] = yvalue
                       
               # Here it checks the blanckness of the aperture.                                 
               tempflux = area2noise(segima,photima,Xr,Yr)
               if raper<2 :
                  if tempflux != -999. : 
                     fluxes[hh] = tempflux
                     if verba: print 'Adding flux: ',tempflux
                     hh += 1 
                     contador += 1
                         
               if raper>1:
                  if tempflux[0] != -999. :
                     fluxes[hh] = tempflux.sum() - (finalmeans[0] * raper**2) #why?
                     contador += 1
                     hh += 1 
                     if verba: print 'hh',hh
                   
        # Computing values from the sample.    
        sigfluxes = U.std_robust(fluxes) 
        good      = U.less_equal(abs(fluxes),5.*sigfluxes)
        fluxes    = U.compress(good,fluxes)
        
        # Storing the background dispersion & mean inside that aperture.   
        finalbackg[app] = U.std(fluxes)
        finalmeans[app] = U.mean(fluxes)
        
        if plots == 'yes': 
           plt.figure(1,figsize = (7,6),dpi=70, facecolor='w', edgecolor='k')
           plt.clf()
           # va1,va2 = N.histogram(fluxes,binhisto,normed=1)
           va1,va2,va3 = plt.hist(fluxes,binhisto,normed=1,facecolor='black',alpha=0.5,linewidth=1.5)
           baseh = va2[0:-1] + ((va2[1]-va2[0])/2.)
           nele  = len(fluxes)
           mu    = U.mean(fluxes)
           sig   = U.std(fluxes)
           # yh    = U.normpdf(va2,mu,sig)
           # plt.plot(va2,yh,'r-',linewidth=3,alpha=0.7)
           mu = U.mean_robust(fluxes) # repeated
           sig = U.std_robust(fluxes) # repeated
           # yh = U.normpdf(va2,mu,sig) # repeated
           # plt.plot(va2,yh,'r--',linewidth=3,alpha=0.7) # repeated          
           plt.legend([('MEAN: %.4f ''\n'' RMS:  %.4f '%(mu,sig)),
                       'Aperture: %i $pix$'%(raper*raper)],
                       numpoints=1,loc='upper right',fontsize=14)
           plt.xlim(mu-4*sig,mu+4*sig)
           plt.xlabel('Aperture Flux [ADU]',size=20)
           plt.ylabel('Number Counts',size=20)
           plt.xticks(fontsize=17),plt.yticks(fontsize=17)
           nameima = photometry.split('/')[-1:][0]
           plt.ylim()
           figure2name = file_root+'_hfaper_%i.png' %(raper)
           plt.savefig(figure2name,dpi=150)
           plt.close()
           
           # Here it saves the info from the histogram.
           ind1 = app*2
           ind2 = app*2+1
           if verba: print 'ind1,ind2',ind1,ind2
           gausshisto[:,ind1] = baseh # va2
           gausshisto[:,ind2] = va1   # yh
            
    # At this point all apertures have been computed.        
    # Now it will represent the sigma_vs_area dependency.
    sigmas = finalbackg #-abs(finalmeans)
    aa,bb = sigmafit(sigmas,sigmas[0],apertures)
      
    if plots == 'yes':
       plt.figure(2, figsize = (7,6),dpi=80, facecolor='w', edgecolor='k')
       plt.clf()
       plt.plot(apertures,sigmas[0]*apertures*(aa+bb*apertures),'k-',apertures,apertures*sigmas[0],'r-')
       plt.legend([('%.3f$\sqrt{N}$ (%.3f + %.3f$\sqrt{N}$)' %(sigmas[0],aa,bb)),
                   '%.3f$\sqrt{N}$ | Poisson Distribution '%(sigmas[0])],
                   numpoints=1,loc='upper left')
       plt.plot(apertures,sigmas,'ko')
       plt.xlim(0.,max(apertures)+1)
       plt.xlabel('$\sqrt{N}$',size=18)
       plt.ylabel('$\sigma$',size=20)
       plt.xticks(fontsize=15)
       plt.yticks(fontsize=15)
       nick2 = photometry.split('/')[-1:][0]

       figure1name = file_root+'_apersigma.png'
       plt.savefig(figure1name,dpi=150)
       plt.close()

    # Saving outputs in ASCII files.
    fileout = file_root+'.apertures.txt'
    header = '# AREA[pix] RMS(std[counts]) MEAN(mean_robust[counts])'
    U.put_data(fileout,(apertures,sigmas,finalmeans),header)
    #print 'Saving data... in %s' %(fileout)

    """
Exemplo n.º 6
0
def get_alhambra_GOLD(field,pointing,ccd):
    """

import alhambragold as alhgold
alhgold.get_alhambra_GOLD(2,1,1)

    
    """

    root_catalogs = '/Volumes/amb22/catalogos/reduction_v4f/f0%i/'%(field)
    root_gold = '/Volumes/amb22/catalogos/reduction_v4f/GOLD/'
    catalog = root_catalogs+'alhambra.F0%iP0%iC0%i.ColorProBPZ.cat' %(field,pointing,ccd)
    if os.path.exists(catalog):
       data1 = coeio.loaddata(catalog)      # Loading the whole catalog content.
       head1 = coeio.loadheader(catalog)    # Loading the original header.
       nc1 = len(data1.T)
       dim1 = len(data1[:,0])
       nh = len(head1)
       
       # Final catalog. 
       catout = root_gold+'alhambra.gold.F0%iP0%iC0%i.ColorProBPZ.cat' %(field,pointing,ccd)
       outfile = open(catout,'w')
       
       # Reducing the length of the catalogs according to input ids
       ids = U.get_str(catalog,0)
       mo  = U.get_data(catalog,65)
       cond1 = U.less(mo,23.000)
       
       data2 = data1[cond1,:]
       nraws = U.shape(data2)[0]
       ncols = U.shape(data2)[1]

       # Setting the IDs to its final values (including F814W+field+pointing+ccd)
       finalids = alh.getalhambrafinalids(field,pointing,ccd,'ISO')
       finalids2 = U.compress(cond1,finalids)
       
       # Restoring header...
       for ii in range(nh):
           outfile.write('%s \n'%(head1[ii]))
           
       formato = '%s  %i  %i  %i  %.4f  %.4f  %.3f  %.3f  %i  %.2f  %.2f  %.4f  %.3f  %.3f  %.1f  %.2f  %.3f  %.2f  %i  '
       formato += '%.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  '
       formato += '%.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  '
       formato += '%.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  '
       formato += '%.3f  %.3f  %.3f  '
       formato += '%i  %i  %.3f  %i  %.2f  %i  '
       formato += '%.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  '
       formato += '%.3f  %.3f  %.3f  %.3f  '
       formato += '%.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  '  
       formato += '%.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  %.3f  '  
       formato += '%.3f  %.3f  %.3f  %.3f  %i  %i  '                              
       form = formato.split()
       
       # Here it defines the format to be used.    
       for jj in range(nraws):
           for ss in range(ncols):
               goodform = ''
               goodform = form[ss]+'  '
               if ss == 0:
                  outfile.write(goodform%(int(finalids2[jj]))) 
               else:
                  outfile.write(goodform%(data2[jj,ss]))
           outfile.write(' \n')    
           
       outfile.close()
Exemplo n.º 7
0
def appending_ids2catalogues(field, pointing, ccd):
    """

import alhambra_3arcs as A3
A3.appending_ids2catalogues(2,1,1)


    """

    catalhambra = root + 'f0%i/alhambra.F0%iP0%iC0%i.ColorProBPZ.cat' % (
        field, field, pointing, ccd)
    idalh = U.get_str(catalhambra, 0)
    idalh2 = U.arange(len(idalh)) + 1
    xalh, yalh = U.get_data(catalhambra, (6, 7))

    cat3arcs = finalroot + 'f0%i/alhambra.f0%ip0%ic0%i.3arcs.cat' % (
        field, field, pointing, ccd)
    id3arcs, x3arcs, y3arcs = U.get_data(cat3arcs, (0, 3, 4))
    print len(id3arcs)

    matchfile = cat3arcs[:-3] + 'idsfrommatch.txt'
    if not os.path.exists(matchfile):
        idcol = idalh2
        xcol = xalh
        ycol = yalh
        idsp = id3arcs
        xsp = x3arcs
        ysp = y3arcs

        pepe = CT.matching_vects(idcol, xcol, ycol, idsp, xsp, ysp, 5)

        # Compressing matches for ColorPro...
        print 'Compressing matches...'
        matchidcol = pepe[:, 0].astype(int)
        gdet_col = U.greater(matchidcol,
                             0)  # Excluding 0's (non matched detections)
        matchidcol = U.compress(gdet_col, (matchidcol))
        # Compressing matches for Spectroscopic...
        matchidsp = pepe[:, 1].astype(int)
        gdet_spz = U.greater(matchidsp,
                             0)  # Excluding 0's (non matched detections)
        matchidsp = U.compress(gdet_spz, (matchidsp))
        print 'len(idcol)', len(idcol)
        print 'len(idsp)', len(idsp)
        if len(matchidcol) == len(matchidsp):
            print 'Creating idredu & zsredu '
            print 'Dimension of matchidsp ', len(matchidsp)
            idredu = U.zeros(len(matchidsp))
            idspredu = U.zeros(len(matchidsp))
            for ii in range(len(matchidsp)):
                colindex = A.id2pos(idcol,
                                    matchidcol[ii])  # Position for Index idcol
                spzindex = A.id2pos(idsp,
                                    matchidsp[ii])  # Position for Index idsp
                idredu[ii] = idcol[colindex]  # ID for ColorPro
                idspredu[ii] = idsp[spzindex]  # Specz for Specz

            matchfile = cat3arcs[:-3] + 'idsfrommatch.txt'
            U.put_data(matchfile, (idredu, idspredu))

    if os.path.exists(matchfile):
        pepa = open(matchfile[:-3] + 'bis.cat', 'w')
        idredu, idspredu = U.get_data(matchfile, (0, 1))
        i11 = idredu.astype(int) - 1
        i22 = idspredu.astype(int)
        lista = []
        for ii in range(len(i11)):
            lista.append(idalh[i11[ii]])
            pepa.write('%s  %s  \n' % (idalh[i11[ii]], i22[ii]))
        pepa.close()

        finalfinal = cat3arcs[:-3] + 'final.cat'
        if os.path.exists(finalfinal): A.deletefile(finalfinal)
        if not os.path.exists(finalfinal):
            print 'Preparing ', finalfinal
            idsa = U.get_str(matchfile[:-3] + 'bis.cat', 0)
            append_IDs2_3arcs_catalogues(cat3arcs, idsa)
Exemplo n.º 8
0
def flagging_dobledetections(cat1,cat2):
    """
    This serves to append an extra column (each to both inputted catalogs)
    indicating either a detection was repeated and with the lowest S/N
    of the two.
    Sources flagged as 1 are those detections to be excluded when combining
    both catalogs into a single one.
--------
import alhambra_overlap as alhov
cat1 = '/Volumes/amb22/catalogos/reduction_v4e/f02/f02p02_colorproext_1_ISO.cat'
cat2 = '/Volumes/amb22/catalogos/reduction_v4e/f02/f02p01_colorproext_1_ISO.cat'
alhov.flagging_dobledetections(cat1,cat2)    
    
    """
    
    id1,ra1,dec1,x1,y1,s2n1 = U.get_data(cat1,(0,1,2,3,4,14))
    id2,ra2,dec2,x2,y2,s2n2 = U.get_data(cat2,(0,1,2,3,4,14))
    ne1 = len(id1)
    ne2 = len(id2)
    g1 = U.greater_equal(ra1,min(ra2))
    g2 = U.less_equal(ra2,max(ra1))
    id1r,ra1r,dec1r,x1r,y1r,s2n1r = U.multicompress(g1,(id1,ra1,dec1,x1,y1,s2n1))
    id2r,ra2r,dec2r,x2r,y2r,s2n2r = U.multicompress(g2,(id2,ra2,dec2,x2,y2,s2n2))
    flag1 = U.zeros(ne1)
    flag2 = U.zeros(ne2)
    
    dim1 = len(id1r)
    dim2 = len(id2r)
    print 'dim1,dim2',dim1,dim2
    if dim1>0 and dim2>0:
       print 'Matching samples....'
       pepe = matching_vects_ddet(id1r,ra1r,dec1r,id2r,ra2r,dec2r,0.000312)   # We use now X,Y instead RA,Dec
       # Purging null elements
       matchidcol = pepe[:,0].astype(int)
       good_det1 = U.greater(matchidcol,0)  # Excluding 0's (non matched detections)
       matchidcol = U.compress(good_det1,(matchidcol))
       matchidsp = pepe[:,1].astype(int)
       good_det2 = U.greater(matchidsp,0) # Excluding 0's (non matched detections)
       matchidsp = U.compress(good_det2,(matchidsp))
       if len(matchidcol) == len(matchidsp) and len(matchidcol) >0 :
           newdim = len(matchidsp)
           print 'Dimension of matching',newdim
           idr1  = U.zeros(newdim)
           idr2  = U.zeros(newdim)
           s2nr1 = U.zeros(newdim)
           s2nr2 = U.zeros(newdim)
           for ii in range(newdim):
               idr1index = ap.id2pos(id1r,matchidcol[ii]) 
               idr2index = ap.id2pos(id2r,matchidsp[ii]) 
               idr1[ii]  = id1r[idr1index]
               s2nr1[ii] = s2n1r[idr1index]               
               idr2[ii]  = id2r[idr2index] 
               s2nr2[ii] = s2n2r[idr2index]
               
           # Select/Purge detections according to its S/N
           marcador1 = U.zeros(newdim)
           marcador2 = U.zeros(newdim)
           for ss in range(newdim):
               cociente = s2nr1[ss]/s2nr2[ss]  
               if cociente >= 1.: marcador1[ss] = 1.
               else: marcador2[ss] = 1.     
                   
           cond1 = U.less(marcador1,1)
           cond2 = U.less(marcador2,1)
           idr1b = U.compress(cond1,idr1)
           dim1rr = len(idr1b)
           idr2b = U.compress(cond2,idr2)
           dim2rr = len(idr2b)
           
           # Two new IDs (finalid1 & finalid2) are generated with 
           # the final elements to be included in the output catalog.
           for hh1 in range(ne1):
               if id1[hh1] in idr1b:
                  flag1[hh1] = 1
                  
           for hh2 in range(ne2):
               if id2[hh2] in idr2b:
                  flag2[hh2] = 1

           # A new smaller catalog will be created containing specz info as an extra column.
           outcat1 = ap.decapfile(cat1)+'.doubledetect.cat'
           outcat2 = ap.decapfile(cat2)+'.doubledetect.cat'
           print 'outcat1',outcat1
           print 'outcat2',outcat2
           ap.appendcol(cat1,flag1,'Flag2Detected',outcat1)
           ap.appendcol(cat2,flag2,'Flag2Detected',outcat2)

           # Renaming files
           ap.renamefile(cat1,cat1+'.old.cat')
           if not os.path.exists(cat1): ap.renamefile(outcat1,cat1)
           ap.renamefile(cat2,cat2+'.old.cat')
           if not os.path.exists(cat2): ap.renamefile(outcat2,cat2)           
           
    else:
       print 'No common sources in betwen the catalogs'
       # A new smaller catalog will be created containing specz info as an extra column.
       outcat1 = ap.decapfile(cat1)+'.doubledetect.cat'
       outcat2 = ap.decapfile(cat2)+'.doubledetect.cat'
       print 'outcat1',outcat1
       print 'outcat2',outcat2
       ap.appendcol(cat1,flag1*0,'Flag2Detected',outcat1)
       ap.appendcol(cat2,flag2*0,'Flag2Detected',outcat2)
       
       # Renaming files
       ap.renamefile(cat1,cat1+'.old.cat')
       if not os.path.exists(cat1): ap.renamefile(outcat1,cat1)
       ap.renamefile(cat2,cat2+'.old.cat')
       if not os.path.exists(cat2): ap.renamefile(outcat2,cat2)   
Exemplo n.º 9
0
def purging_dobledetections(cat1,cat2):
    """

import alhambra_overlap
from alhambra_overlap import *
cat1 = '/Volumes/amb22/catalogos/reduction_v4e/f02/f02p02_colorproext_1_ISO.cat'
cat2 = '/Volumes/amb22/catalogos/reduction_v4e/f02/f02p01_colorproext_1_ISO.cat'
purging_dobledetections(cat1,cat2)    
    
    """
    
    id1,ra1,dec1,x1,y1,s2n1 = U.get_data(cat1,(0,1,2,3,4,14))
    id2,ra2,dec2,x2,y2,s2n2 = U.get_data(cat2,(0,1,2,3,4,14))
    ne1 = len(id1)
    ne2 = len(id2)
    g1 = U.greater_equal(ra1,min(ra2))
    g2 = U.less_equal(ra2,max(ra1))
    id1r,ra1r,dec1r,x1r,y1r,s2n1r = U.multicompress(g1,(id1,ra1,dec1,x1,y1,s2n1))
    id2r,ra2r,dec2r,x2r,y2r,s2n2r = U.multicompress(g2,(id2,ra2,dec2,x2,y2,s2n2))

    dim1 = len(id1r)
    dim2 = len(id2r)
    print 'dim1,dim2',dim1,dim2
    if dim1>0 and dim2>0:
       print 'Matching samples....'
       pepe = matching_vects_ddet(id1r,ra1r,dec1r,id2r,ra2r,dec2r,0.000312)   # We use now X,Y instead RA,Dec
       # Purging null elements
       matchidcol = pepe[:,0].astype(int)
       good_det1 = U.greater(matchidcol,0)  # Excluding 0's (non matched detections)
       matchidcol = U.compress(good_det1,(matchidcol))
       matchidsp = pepe[:,1].astype(int)
       good_det2 = U.greater(matchidsp,0) # Excluding 0's (non matched detections)
       matchidsp = U.compress(good_det2,(matchidsp))
       if len(matchidcol) == len(matchidsp) and len(matchidcol) >0 :
           newdim = len(matchidsp)
           print 'Dimension of matching',newdim
           idr1  = U.zeros(newdim)
           idr2  = U.zeros(newdim)
           s2nr1 = U.zeros(newdim)
           s2nr2 = U.zeros(newdim)
           for ii in range(newdim):
               idr1index = ap.id2pos(id1r,matchidcol[ii]) 
               idr2index = ap.id2pos(id2r,matchidsp[ii]) 
               idr1[ii]  = id1r[idr1index]
               s2nr1[ii] = s2n1r[idr1index]               
               idr2[ii]  = id2r[idr2index] 
               s2nr2[ii] = s2n2r[idr2index]
               
           # Select/Purge detections according to its S/N
           marcador1 = U.zeros(newdim)
           marcador2 = U.zeros(newdim)
           for ss in range(newdim):
               cociente = s2nr1[ss]/s2nr2[ss]  
               if cociente >= 1.: marcador1[ss] = 1.
               else: marcador2[ss] = 1.     
                   
           cond1 = U.less(marcador1,1)
           cond2 = U.less(marcador2,1)
           idr1b = U.compress(cond1,idr1)
           dim1rr = len(idr1b)
           idr2b = U.compress(cond2,idr2)
           dim2rr = len(idr2b)
           print ''
           print 'Number of detections to be removed from cat1: ', dim1rr
           print 'Number of detections to be removed from cat2: ', dim2rr
           print ''
           
           # Two new IDs (finalid1 & finalid2) are generated with 
           # the final elements to be included in the output catalog.
           finalid1 = U.zeros((ne1-dim1rr))
           finalid2 = U.zeros((ne2-dim2rr))
           kk1 = 0
           for hh1 in range(ne1):
               if id1[hh1] not in idr1b:
                  finalid1[kk1] = id1[hh1]
                  kk1 += 1
                  
           print 'kk1',kk1
           
           kk2 = 0       
           for hh2 in range(ne2):
               if id2[hh2] not in idr2b:
                  if kk2 <= (ne2-dim2rr-1): 
                     finalid2[kk2] = id2[hh2]
                     kk2+=1
                  
           print 'kk2',kk2       
                  
           # A new smaller catalog will be created containing specz info as an extra column.
           outcat1 = ap.decapfile(cat1)+'.wo2detect.cat'
           outcat2 = ap.decapfile(cat2)+'.wo2detect.cat'
           print 'outcat1',outcat1
           print 'outcat2',outcat2
           ap.select_rows_bylist(cat1,finalid1,outcat1)
           ap.select_rows_bylist(cat2,finalid2,outcat2)
           
           
    else:
       print 'No common sources in betwen the catalogs'