Exemplo n.º 1
0
def guess_action_cal_reward(state_path, output_path):
    state_file = open(state_path, "r")
    output = open(output_path, 'w')
    lines = state_file.readlines()

    state_logs = []
    prev_state = None

    for line in lines:
        cur_state = StateUtil.parse_state_log(line)
        if cur_state.tick == StateUtil.TICK_PER_STATE:
            print("clear")
            prev_state = None
        elif prev_state is not None and prev_state.tick >= cur_state.tick:
            print ("clear")
            prev_state = None
        if prev_state is not None:
            state_logs.append(prev_state)
        prev_state = cur_state

    if prev_state is not None:
        state_logs.append(prev_state)

    # 猜测玩家行为
    for idx in range(1, len(state_logs)-1):
        prev_state = state_logs[idx-1]
        cur_state = state_logs[idx]
        next_state = state_logs[idx+1]

        if cur_state.tick >= 55044:
            db = 1

        hero = prev_state.get_hero("27")
        line_index = 1
        near_enemy_heroes = StateUtil.get_nearby_enemy_heros(prev_state, hero.hero_name,
                                                             StateUtil.LINE_MODEL_RADIUS)
        near_enemy_units = StateUtil.get_nearby_enemy_units(prev_state, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
        nearest_enemy_tower = StateUtil.get_nearest_enemy_tower(prev_state, hero.hero_name,
                                                                StateUtil.LINE_MODEL_RADIUS)
        near_enemy_units_in_line = StateUtil.get_units_in_line(near_enemy_units, line_index)
        nearest_enemy_tower_in_line = StateUtil.get_units_in_line([nearest_enemy_tower], line_index)
        if len(near_enemy_heroes) != 0 or len(near_enemy_units_in_line) != 0 or len(
                nearest_enemy_tower_in_line) != 0:
            player_action = Replayer.guess_player_action(prev_state, cur_state, next_state, "27", "28")
            action_str = StateUtil.build_command(player_action)
            print('玩家行为分析:' + str(action_str) + ' tick:' + str(prev_state.tick) + ' prev_pos: ' +
                  hero.pos.to_string() + ', cur_pos: ' + cur_state.get_hero(hero.hero_name).pos.to_string())
            prev_state.add_action(player_action)

    # 测试计算奖励值
    state_logs_with_reward = LineModel.update_rewards(state_logs)
    for state_with_reward in state_logs_with_reward:
        # 将结果记录到文件
        state_encode = state_with_reward.encode()
        state_json = JSON.dumps(state_encode)
        output.write(strftime("%Y-%m-%d %H:%M:%S", gmtime()) + " -- " + state_json + "\n")
        output.flush()

    print(len(state_logs))
Exemplo n.º 2
0
 def upgrade_skills(self, state_info, hero_name):
     # 如果有可以升级的技能,优先升级技能3
     hero = state_info.get_hero(hero_name)
     skills = StateUtil.get_skills_can_upgrade(hero)
     if len(skills) > 0:
         skillid = 3 if 3 in skills else skills[0]
         update_cmd = CmdAction(hero.hero_name, CmdActionEnum.UPDATE,
                                skillid, None, None, None, None, None, None)
         update_str = StateUtil.build_command(update_cmd)
         return update_str
Exemplo n.º 3
0
    def guess_hero_actions(self, state_index, real_heros=None):
        prev_state = self.state_cache[state_index - 1]
        cur_state = self.state_cache[state_index]
        next_state = self.state_cache[state_index + 1]

        # 如果有必要的话,更新这一帧中真人玩家的行为信息
        if real_heros is not None:
            for hero_name in real_heros:
                hero_action = Replayer.guess_player_action(prev_state, cur_state, next_state, hero_name, '28')
                cur_state.add_action(hero_action)
                action_str = StateUtil.build_command(hero_action)
                print('玩家行为分析:' + str(action_str) + ' tick:' + str(cur_state.tick))
Exemplo n.º 4
0
    def add_other_hero_action(input_data, hero_info, action_cmd, debug=False):
        # 如果是自己,则忽略
        if hero_info.hero_name == action_cmd.hero_name:
            return input_data

        # 如果不是攻击类行为,忽略
        if action_cmd.action != CmdActionEnum.ATTACK and action_cmd.action != CmdActionEnum.CAST:
            return input_data

        # 如果不是己方的动作,忽略
        friends, opponents = TeamBattleUtil.get_friend_opponent_heros(
            TeamBattleInput.HERO_LIST, hero_info.hero_name)
        if action_cmd.hero_name != hero_info.hero_name and action_cmd.hero_name not in friends:
            return input_data

        # 更新输入数据
        # 首先找到目标英雄ID,然后找到使用的技能ID
        hero_index = friends.index(action_cmd.hero_name) + 1
        tgt_hero_index = TeamBattleInput.TEAM_A.index(action_cmd.tgtid) if action_cmd.tgtid in TeamBattleInput.TEAM_A \
            else TeamBattleInput.TEAM_B.index(action_cmd.tgtid)
        change_index = hero_index * 89 + 15 + tgt_hero_index if action_cmd.action == CmdActionEnum.ATTACK \
            else hero_index * 89 + 20 + (int(action_cmd.skillid) - 1) * 23 + 18 + tgt_hero_index

        prev_value = input_data[change_index]
        if prev_value != 0:
            if debug:
                print("add_other_hero_action", "must be something wrong",
                      "prev_value not zero")
        input_data[change_index] = 1
        debug_action_str = StateUtil.build_command(action_cmd)
        if debug:
            print("add_other_hero_action", "add_hero_info",
                  hero_info.hero_name, "hero_index", hero_index,
                  "tgt_hero_index", tgt_hero_index, "action_cmd.action",
                  action_cmd.action, "action_cmd_skill", action_cmd.skillid,
                  "change_index", change_index, "cmd", debug_action_str)
        return input_data
Exemplo n.º 5
0
    def build_response(self, state_cache, state_index, hero_name):
        action_strs=[]
        restart = False

        # 对于模型,分析当前帧的行为
        if self.real_hero != hero_name:
            state_info = state_cache[state_index]
            prev_hero = state_cache[state_index-1].get_hero(hero_name) if len(state_cache) >= 2 is not None else None
        # 如果有真实玩家,我们需要一些历史数据,所以分析3帧前的行为
        elif len(state_cache) > 3:
            state_info = state_cache[state_index-3]
            next1_state_info = state_cache[state_index-2]
            next2_state_info = state_cache[state_index-1]
            next3_state_info = state_cache[state_index]
        else:
            return action_strs, False

        # 决定是否购买道具
        buy_action = EquipUtil.buy_equip(state_info, hero_name)
        if buy_action is not None:
            buy_str = StateUtil.build_command(buy_action)
            action_strs.append(buy_str)

        # 如果有可以升级的技能,优先升级技能3
        hero = state_info.get_hero(hero_name)
        skills = StateUtil.get_skills_can_upgrade(hero)
        if len(skills) > 0:
            skillid = 3 if 3 in skills else skills[0]
            update_cmd = CmdAction(hero.hero_name, CmdActionEnum.UPDATE, skillid, None, None, None, None, None, None)
            update_str = StateUtil.build_command(update_cmd)
            action_strs.append(update_str)

        # 回城相关逻辑
        # 如果在回城中且没有被打断则继续回城,什么也不用返回
        if prev_hero is not None:
            if hero.hero_name in self.hero_strategy and self.hero_strategy[hero.hero_name] == ActionEnum.town_ing \
                    and prev_hero.hp <= hero.hp \
                    and not StateUtil.if_hero_at_basement(hero):
                if not hero.skills[6].canuse:
                    print(self.battle_id, hero.hero_name, '回城中,继续回城')
                    return action_strs, False
                else:
                    print(self.battle_id, hero.hero_name, '回城失败')
                    town_action = CmdAction(hero.hero_name, CmdActionEnum.CAST, 6, hero.hero_name, None, None, None,
                                            None, None)
                    action_str = StateUtil.build_command(town_action)
                    action_strs.append(action_str)
                    return action_strs, False
                if hero.hp <= 0:
                    self.hero_strategy[hero.hero_name] = None
                    return action_strs, False

        # # 补血逻辑
        # if prev_hero is not None and hero.hero_name in self.hero_strategy and self.hero_strategy[
        #     hero.hero_name] == ActionEnum.hp_restore:
        #     if StateUtil.cal_distance2(prev_hero.pos, hero.pos) < 100:
        #         print(self.battle_id, hero_name, '到达补血点', '血量增长', hero.hp - prev_hero.hp)
        #         del self.hero_strategy[hero_name]
        #         if hero == self.model1_hero:
        #             self.model1_hp_restore = time.time()
        #         else:
        #             self.model2_hp_restore = time.time()

        # 撤退逻辑
        # TODO 甚至可以使用移动技能移动
        if prev_hero is not None and hero.hero_name in self.hero_strategy and self.hero_strategy[hero.hero_name] == ActionEnum.retreat_to_town:
            if StateUtil.cal_distance2(prev_hero.pos, hero.pos) < 100:
                print(self.battle_id, hero_name, '开始回城')
                self.hero_strategy[hero.hero_name] = ActionEnum.town_ing
                town_action = CmdAction(hero.hero_name, CmdActionEnum.CAST, 6, hero.hero_name, None, None, None,
                                        None, None)
                action_str = StateUtil.build_command(town_action)
                action_strs.append(action_str)
            else:
                print(self.battle_id, hero_name, '还在撤退中', StateUtil.cal_distance2(prev_hero.pos, hero.pos))
            return action_strs, False

        # 如果击杀了对方英雄,扫清附近小兵之后则启动撤退回城逻辑
        if prev_hero is not None:
            if hero.hero_name in self.hero_strategy and self.hero_strategy[hero.hero_name] == ActionEnum.town_ing and prev_hero.hp <= hero.hp \
                    and not StateUtil.if_hero_at_basement(hero):
                if not hero.skills[6].canuse:
                    return action_strs, False
                else:
                    town_action = CmdAction(hero.hero_name, CmdActionEnum.CAST, 6, hero.hero_name, None, None, None,
                                            None, None)
                    action_str = StateUtil.build_command(town_action)
                    action_strs.append(action_str)
        if hero.hp <= 0:
            self.hero_strategy[hero.hero_name] = None
            return action_strs, False

        # 检查周围状况
        near_enemy_heroes = StateUtil.get_nearby_enemy_heros(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
        near_enemy_units = StateUtil.get_nearby_enemy_units(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
        nearest_enemy_tower = StateUtil.get_nearest_enemy_tower(state_info, hero.hero_name,
                                                                StateUtil.LINE_MODEL_RADIUS + 3)
        nearest_friend_units = StateUtil.get_nearby_friend_units(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
        line_index = 1
        near_enemy_units_in_line = StateUtil.get_units_in_line(near_enemy_units, line_index)
        nearest_enemy_tower_in_line = StateUtil.get_units_in_line([nearest_enemy_tower], line_index)

        # 如果击杀对面英雄就回城补血。整体逻辑为,周围没有兵的情况下启动撤退逻辑,到达撤退地点之后启动回城。补满血之后再跟兵出来
        # 处在泉水之中的时候设置策略层为吃线
        if len(near_enemy_units_in_line) == 0 and len(near_enemy_heroes) == 0:
            if (hero_name == self.model1_hero and self.model2_just_dead == 1 and not StateUtil.if_hero_at_basement(hero)) \
                    or (hero_name == self.model2_hero and self.model1_just_dead == 1 and not StateUtil.if_hero_at_basement(hero)):
                if hero.hp / float(hero.maxhp) > 0.8:
                    if hero_name == self.model1_hero:
                        self.model2_just_dead = 0
                    else:
                        self.model1_just_dead = 0
                else:
                    print(self.battle_id, hero_name, '选择撤退')
                    self.hero_strategy[hero_name] = ActionEnum.retreat_to_town
                    retreat_pos = StateUtil.get_retreat_pos(state_info, hero, line_index=1)
                    action = CmdAction(hero_name, CmdActionEnum.MOVE, None, None, retreat_pos, None, None, -1, None)
                    action_str = StateUtil.build_command(action)
                    action_strs.append(action_str)
                    if hero_name == self.model1_hero:
                        self.model2_just_dead = 0
                    else:
                        self.model1_just_dead = 0
                    return action_strs, False

            if StateUtil.if_hero_at_basement(hero):
                if hero_name == self.model1_hero:
                    self.model2_just_dead = 0
                else:
                    self.model1_just_dead = 0
                if hero.hp < hero.maxhp:
                    if hero_name in self.hero_strategy:
                        del self.hero_strategy[hero_name]
                    return action_strs, False

            # # 残血并且周围没有敌人的情况下,可以去塔后吃加血
            # if hero.hp / float(hero.maxhp) < 0.9 and hero not in self.hero_strategy:
            #     print('补血条件', self.battle_id, hero_name, time.time(), self.model1_hp_restore, self.model2_hp_restore)
            #     if hero == self.model1_hero and time.time() - self.model1_hp_restore > LineTrainerPPO.HP_RESTORE_GAP:
            #         print(self.battle_id, hero_name, '选择加血')
            #         self.hero_strategy[hero_name] = ActionEnum.hp_restore
            #     elif hero == self.model2_hero and time.time() - self.model2_hp_restore > LineTrainerPPO.HP_RESTORE_GAP:
            #         print(self.battle_id, hero_name, '选择加血')
            #         self.hero_strategy[hero_name] = ActionEnum.hp_restore
            #
            #     if self.hero_strategy[hero_name] == ActionEnum.hp_restore:
            #         restore_pos = StateUtil.get_hp_restore_place(state_info, hero)
            #         action = CmdAction(hero_name, CmdActionEnum.MOVE, None, None, restore_pos, None, None, -1, None)
            #         action_str = StateUtil.build_command(action)
            #         action_strs.append(action_str)
            #         return action_strs, False

        # 开始根据策略决定当前的行动
        # 对线情况下,首先拿到兵线,朝最前方的兵线移动
        # 如果周围有危险(敌方单位)则启动对线模型
        # 如果周围有小兵或者塔,需要他们都是在指定线上的小兵或者塔
        if (len(near_enemy_units_in_line) == 0 and len(nearest_enemy_tower_in_line) == 0 and (
                len(near_enemy_heroes) == 0 or
                StateUtil.if_in_line(hero, line_index, 4000) == -1)
            ) or\
            (len(nearest_friend_units) == 0 and len(near_enemy_units_in_line) == 0 and
            len(near_enemy_heroes) == 0 and len(nearest_enemy_tower_in_line) == 1):

            # 跟兵线或者跟塔,优先跟塔
            self.hero_strategy[hero.hero_name] = ActionEnum.line_1
            # print("策略层:因为附近没有指定兵线的敌人所以开始吃线 " + hero.hero_name)
            front_soldier = StateUtil.get_frontest_soldier_in_line(state_info, line_index, hero.team)
            first_tower = StateUtil.get_first_tower(state_info, hero)

            if front_soldier is None or (hero.team == 0 and first_tower.pos.x > front_soldier.pos.x) or (hero.team == 1 and first_tower.pos.x < front_soldier.pos.x):
                # 跟塔,如果塔在前面的话
                follow_tower_pos = StateUtil.get_tower_behind(first_tower, hero, line_index=1)
                move_action = CmdAction(hero.hero_name, CmdActionEnum.MOVE, None, None, follow_tower_pos, None, None,
                                        None, None)
                action_str = StateUtil.build_command(move_action)
                action_strs.append(action_str)
            else:
                # 得到最前方的兵线位置
                move_action = CmdAction(hero.hero_name, CmdActionEnum.MOVE, None, None, front_soldier.pos, None, None,
                                        None, None)
                action_str = StateUtil.build_command(move_action)
                action_strs.append(action_str)
        else:
            if self.real_hero != hero_name:
                # 使用模型进行决策
                # print("使用对线模型决定英雄%s的行动" % hero.hero_name)
                self.hero_strategy[hero.hero_name] = ActionEnum.line_model

                # 目前对线只涉及到两名英雄
                rival_hero = '28' if hero.hero_name == '27' else '27'
                action, explorer_ratio, action_ratios = self.get_action(state_info, hero_name, rival_hero)

                # 考虑使用固定策略
                # 如果决定使用策略,会连续n条行为全都采用策略(比如确保对方残血时候连续攻击的情况)
                # 如果策略返回为空则表示策略中断
                if self.policy_ratio > 0 and (
                        0 < self.cur_policy_act_idx_map[hero_name] < self.policy_continue_acts
                        or random.uniform(0, 1) <= self.policy_ratio
                ):
                    policy_action = LineTrainerPolicy.choose_action(state_info, action_ratios, hero_name, rival_hero,
                                            near_enemy_units, nearest_friend_units)
                    if policy_action is not None:
                        policy_action.vpred = action.vpred
                        action = policy_action
                        self.cur_policy_act_idx_map[hero_name] += 1
                        print("英雄 " + hero_name + " 使用策略,策略行为计数 idx " + str(self.cur_policy_act_idx_map[hero_name]))
                        if self.cur_policy_act_idx_map[hero_name] >= self.policy_continue_acts:
                            self.cur_policy_act_idx_map[hero_name] = 0
                    else:
                        # 策略中断,清零
                        if self.cur_policy_act_idx_map[hero_name] > 0:
                            print("英雄 " + hero_name + " 策略中断,清零")
                            self.cur_policy_act_idx_map[hero_name] = 0

                action_str = StateUtil.build_command(action)
                action_strs.append(action_str)

                # 如果是要求英雄施法回城,更新英雄状态,这里涉及到后续多帧是否等待回城结束
                if action.action == CmdActionEnum.CAST and int(action.skillid) == 6:
                    print("英雄%s释放了回城" % hero_name)
                    self.hero_strategy[hero.hero_name] = ActionEnum.town_ing

                # 如果是选择了撤退,进行特殊标记,会影响到后续的行为
                if action.action == CmdActionEnum.RETREAT:
                    print("英雄%s释放了撤退,撤退点为%s" % (hero_name, action.tgtpos.to_string()))
                    self.hero_strategy[hero.hero_name] = ActionEnum.retreat
                    self.retreat_pos = action.tgtpos

                # 如果批量训练结束了,这时候需要清空未使用的训练集,然后重启游戏
                if action.action == CmdActionEnum.RESTART:
                    restart = True
                else:
                    # 保存action信息到状态帧中
                    state_info.add_action(action)
            else:
                # 还是需要模型来计算出一个vpred
                rival_hero = '28' if hero.hero_name == '27' else '27'
                action, explorer_ratio, action_ratios = self.get_action(state_info, hero_name, rival_hero)

                # 推测玩家的行为
                guess_action = Replayer.guess_player_action(state_info, next1_state_info, next2_state_info,
                                                            next3_state_info, hero_name, rival_hero)
                guess_action.vpred = action.vpred
                action_str = StateUtil.build_command(guess_action)
                action_str['tick'] = state_info.tick
                print('猜测玩家行为为:' + JSON.dumps(action_str))

                # 保存action信息到状态帧中
                state_info.add_action(guess_action)

        return action_strs, restart
Exemplo n.º 6
0
 def buy_equip(self, state_info, hero_name):
     # 决定是否购买道具
     buy_action = EquipUtil.buy_equip(state_info, hero_name)
     if buy_action is not None:
         buy_str = StateUtil.build_command(buy_action)
         return buy_str
Exemplo n.º 7
0
    def build_response(self, raw_state_str):
        self.save_raw_log(raw_state_str)
        prev_state_info = self.state_cache[-1] if len(
            self.state_cache) > 0 else None
        response_strs = []

        # 解析客户端发送的请求
        obj = JSON.loads(raw_state_str)
        raw_state_info = StateInfo.decode(obj)

        # 重开时候会有以下报文  {"wldstatic":{"ID":9051},"wldruntime":{"State":0}}
        if raw_state_info.tick == -1:
            return {"ID": raw_state_info.battleid, "tick": -1}

        if raw_state_info.tick <= StateUtil.TICK_PER_STATE and (
                prev_state_info is None
                or prev_state_info.tick > raw_state_info.tick):
            print("clear")
            prev_state_info = None
            self.state_cache = []
            self.battle_started = -1
            self.battle_heroes_cache = []
            self.dead_heroes = []
            self.dead_heroes_cache = []
            self.data_inputs = []
            self.rebooting = False
        elif prev_state_info is None and raw_state_info.tick > StateUtil.TICK_PER_STATE:
            # 不是开始帧的话直接返回重启游戏
            # 还有偶然情况下首帧没有tick(即-1)的情况,这种情况下只能重启本场战斗
            print("battle_id", self.battle_id, "tick", raw_state_info.tick,
                  '不是开始帧的话直接返回重启游戏', raw_state_info.tick)
            action_strs = [
                StateUtil.build_action_command('27', 'RESTART', None)
            ]
            rsp_obj = {
                "ID": raw_state_info.battleid,
                "tick": raw_state_info.tick,
                "cmd": action_strs
            }
            rsp_str = JSON.dumps(rsp_obj)
            return rsp_str

        state_info = StateUtil.update_state_log(prev_state_info,
                                                raw_state_info)
        hero = state_info.get_hero("27")

        if hero is None or hero.hp is None:
            # 偶然情况处理,如果找不到英雄,直接重开
            print("battle_id", self.battle_id, "tick", state_info.tick,
                  '不是开始帧的话直接返回重启游戏', raw_state_info.tick)
            action_strs = [
                StateUtil.build_action_command('27', 'RESTART', None)
            ]
            rsp_obj = {
                "ID": raw_state_info.battleid,
                "tick": raw_state_info.tick,
                "cmd": action_strs
            }
            rsp_str = JSON.dumps(rsp_obj)
            return rsp_str

        # 战斗前准备工作
        if len(self.state_cache) == 0:
            # 第一帧的时候,添加金钱和等级
            for hero in self.heros:
                add_gold_cmd = CmdAction(hero, CmdActionEnum.ADDGOLD, None,
                                         None, None, None, None, None, None)
                add_gold_cmd.gold = 3000
                add_gold_str = StateUtil.build_command(add_gold_cmd)
                response_strs.append(add_gold_str)

                add_lv_cmd = CmdAction(hero, CmdActionEnum.ADDLV, None, None,
                                       None, None, None, None, None)
                add_lv_cmd.lv = 9
                add_lv_str = StateUtil.build_command(add_lv_cmd)
                response_strs.append(add_lv_str)
        elif len(self.state_cache) > 1:
            # 第二帧时候开始,升级技能,购买装备,这个操作可能会持续好几帧
            for hero in self.heros:
                upgrade_cmd = self.upgrade_skills(state_info, hero)
                if upgrade_cmd is not None:
                    response_strs.append(upgrade_cmd)

                buy_cmd = self.buy_equip(state_info, hero)
                if buy_cmd is not None:
                    response_strs.append(buy_cmd)

        for hero in self.heros:
            # 判断是否英雄死亡
            if prev_state_info is not None:
                dead = StateUtil.if_hero_dead(prev_state_info, state_info,
                                              hero)
                if dead == 1 and hero not in self.dead_heroes:
                    print("battle_id", self.battle_id, "tick", state_info.tick,
                          "英雄死亡", hero, "tick", state_info.tick)
                    self.dead_heroes.append(hero)

        # 首先要求所有英雄站到团战圈内,然后开始模型计算,这时候所有的行动都有模型来决定
        # 需要过滤掉无效的行动,同时屏蔽会离开战斗圈的移动
        #TODO 开始团战后,如果有偶尔的技能移动会离开圈,则拉回来

        # 这里会排除掉死亡的英雄,他们不需要再加入团战
        # 团战范围在收缩
        battle_range = self.cal_battle_range(
            len(self.state_cache) - self.battle_started)
        heroes_in_range, heroes_out_range = TeamBattleTrainer.all_in_battle_range(
            state_info, self.heros, self.dead_heroes, battle_range)

        # 存活英雄
        battle_heros = list(heroes_in_range)
        battle_heros.extend(heroes_out_range)

        # 缓存参战情况和死亡情况,用于后续训练
        self.battle_heroes_cache.append(battle_heros)
        self.dead_heroes_cache.append(list(self.dead_heroes))

        if state_info.tick >= 142560:
            debuginfo = True

        # 团战还没有开始,有英雄还在圈外
        if len(heroes_out_range) > 0:
            if self.battle_started > -1:
                print('battle_id', self.battle_id, "战斗已经开始,但是为什么还有英雄在团战圈外",
                      ','.join(heroes_out_range), "battle_range", battle_range)

            # 移动到两个开始战斗地点附近
            # 如果是团战开始之后,移动到团战中心点
            for hero in heroes_out_range:
                start_point_x = randint(0, 8000)
                start_point_z = TeamBattleTrainer.BATTLE_CIRCLE_RADIUS_BATTLE_START * 1000 if self.battle_started == -1 else 0
                start_point_z += randint(-4000, 4000)
                if TeamBattleUtil.get_hero_team(hero) == 0:
                    start_point_z *= -1
                start_point_z += TeamBattleTrainer.BATTLE_POINT_Z
                tgt_pos = PosStateInfo(start_point_x, 0, start_point_z)
                move_action = CmdAction(hero, CmdActionEnum.MOVE, None, None,
                                        tgt_pos, None, None, None, None)
                mov_cmd_str = StateUtil.build_command(move_action)
                response_strs.append(mov_cmd_str)
        # 团战已经开始
        elif not self.rebooting:
            if self.battle_started == -1:
                self.battle_started = len(self.state_cache)

            # 对特殊情况。比如德古拉使用大招hp会变1,修改帧状态
            state_info, _ = TeamBattlePolicy.modify_status_4_draculas_invincible(
                state_info, self.state_cache)

            # action_cmds, input_list, model_upgrade = self.get_model_actions(state_info, heroes_in_range)
            # 跟队伍,每个队伍得到行为
            team_a, team_b = TeamBattleUtil.get_teams(heroes_in_range)
            team_actions_a, input_list_a, model_upgrade_a = self.get_model_actions_team(
                state_info, team_a, heroes_in_range)
            team_actions_b, input_list_b, model_upgrade_b = self.get_model_actions_team(
                state_info, team_b, heroes_in_range)

            # 如果模型已经开战,重启战斗
            if (model_upgrade_a or model_upgrade_b
                ) and self.battle_started < len(self.state_cache) + 1:
                print("battle_id", self.battle_id, "因为模型升级,重启战斗",
                      self.battle_started, len(self.state_cache))
                action_strs = [
                    StateUtil.build_action_command('27', 'RESTART', None)
                ]
                rsp_obj = {
                    "ID": raw_state_info.battleid,
                    "tick": raw_state_info.tick,
                    "cmd": action_strs
                }
                rsp_str = JSON.dumps(rsp_obj)
                return rsp_str
            data_input_map = {}
            for action_cmd, data_input in zip(team_actions_a + team_actions_b,
                                              input_list_a + input_list_b):
                action_str = StateUtil.build_command(action_cmd)
                response_strs.append(action_str)
                state_info.add_action(action_cmd)
                data_input_map[action_cmd.hero_name] = data_input

            # 缓存所有的模型输入,用于后续训练
            self.data_inputs.append(data_input_map)

        # 添加记录到缓存中
        self.state_cache.append(state_info)

        # 将模型行为加入训练缓存,同时计算奖励值
        # 注意:因为奖励值需要看后续状态,所以这个计算会有延迟
        last_x_index = 2
        if self.battle_started > -1 and len(self.data_inputs) >= last_x_index:
            if self.rebooting:
                # 测试发现重启指令发出之后,可能下一帧还没开始重启战斗,这种情况下抛弃训练
                print("battle_id", self.battle_id, "tick", state_info.tick,
                      "warn", "要求重启战斗,但是还在收到后续帧状态, 继续重启")

                # 重启游戏
                response_strs = [
                    StateUtil.build_action_command('27', 'RESTART', None)
                ]
            else:
                state_index = len(self.state_cache) - last_x_index
                win, win_team, left_heroes = self.remember_replay_heroes(
                    -last_x_index, state_index, battle_range)

                # 团战结束条件
                # 首先战至最后一人
                # all_in_team = TeamBattleUtil.all_in_one_team(heroes_in_range)
                # if self.battle_started:
                #     if len(self.dead_heroes) >= 9 or (len(self.dead_heroes) >= 5 and all_in_team > -1):
                if win == 1:
                    # 重启游戏
                    print('battle_id', self.battle_id, "重启游戏", "剩余人员",
                          ','.join(left_heroes))
                    response_strs = [
                        StateUtil.build_action_command('27', 'RESTART', None)
                    ]
                    self.rebooting = True
        # battle_heros = self.search_team_battle(state_info)
        # if len(battle_heros) > 0:
        #     print("team battle heros", ';'.join(battle_heros))
        #
        # heros_need_model = []
        # for hero in self.heros:
        #     # 判断是否英雄死亡
        #     if prev_state_info is not None:
        #         dead = StateUtil.if_hero_dead(prev_state_info, state_info, hero)
        #         if dead == 1 and hero not in self.dead_heroes:
        #             self.dead_heroes.append(hero)
        #
        #     # 复活的英雄不要再去参团
        #     if hero in self.dead_heroes:
        #         continue
        #
        #     # near_enemy_heroes = StateUtil.get_nearby_enemy_heros(state_info, hero, TeamBattleTrainer.MODEL_RANGE)
        #     if hero not in battle_heros:
        #         # 移动到团战点附近,添加部分随机
        #         rdm_delta_x = randint(0, 1000)
        #         rdm_delta_z = randint(0, 1000)
        #         tgt_pos = PosStateInfo(TeamBattleTrainer.BATTLE_POINT_X + rdm_delta_x, 0, TeamBattleTrainer.BATTLE_POINT_Z + rdm_delta_z)
        #         move_action = CmdAction(hero, CmdActionEnum.MOVE, None, None, tgt_pos, None, None, None, None)
        #         mov_cmd_str = StateUtil.build_command(move_action)
        #         response_strs.append(mov_cmd_str)
        #     else:
        #         # 启动模型决策
        #         heros_need_model.append(hero)
        #
        # if len(heros_need_model) > 0:
        #     action_cmds = self.get_model_actions(state_info, heros_need_model)
        #     for action_cmd in action_cmds:
        #         action_str = StateUtil.build_command(action_cmd)
        #         response_strs.append(action_str)
        #         state_info.add_action(action_cmd)

        #TODO 记录模型输出,用于后续训练

        # 返回结果给游戏端
        rsp_obj = {
            "ID": state_info.battleid,
            "tick": state_info.tick,
            "cmd": response_strs
        }
        rsp_str = JSON.dumps(rsp_obj)
        print('battle_id', self.battle_id, 'response', rsp_str)
        return rsp_str
Exemplo n.º 8
0
    def get_model_actions(self, state_info, heros, debug=False):
        # 第一个人先选,然后第二个人,一直往后,后面的人会在参数中添加上之前人的行为
        # TODO 同时可以变成按照模型给出maxq大小来决定谁先选
        # 这样的好处是所有人选择的行为就是最后执行的行为

        # 暂时为随机英雄先选
        random_heros = list(heros)
        shuffle(random_heros)

        # 得到当前团战范围,因为会收缩
        battle_range = self.cal_battle_range(
            len(self.state_cache) - self.battle_started)

        action_cmds = []
        input_list = []
        model_upgrade = False
        for hero in random_heros:
            hero_info = state_info.get_hero(hero)
            data_input = TeamBattleInput.gen_input(state_info, hero)
            data_input = np.array(data_input)

            # 对于之前的英雄行为,加入输入
            for prev_action in action_cmds:
                data_input = TeamBattleInput.add_other_hero_action(
                    data_input, hero_info, prev_action, debug)

            action_list, explor_value, vpreds, clear_cache = self.model_util.get_action_list(
                self.battle_id, hero, data_input)
            action_str = ' '.join(
                str("%.4f" % float(act)) for act in action_list)
            if debug:
                print("battle_id", self.battle_id, "tick", state_info.tick,
                      "hero", hero, "model action list", action_str)
            unaval_list = TeamBattleTrainer.list_unaval_actions(
                action_list, state_info, hero, heros, battle_range)
            unaval_list_str = ' '.join(
                str("%.4f" % float(act)) for act in unaval_list)
            if debug:
                print("battle_id", self.battle_id, "tick", state_info.tick,
                      "hero", hero, "model remove_unaval_actions",
                      unaval_list_str)
            friends, opponents = TeamBattleUtil.get_friend_opponent_heros(
                heros, hero)
            action_cmd, max_q, selected = TeamBattleTrainer.get_action_cmd(
                action_list, unaval_list, state_info, hero, friends, opponents)
            if debug:
                print("battle_id", self.battle_id, "tick", state_info.tick,
                      "hero", hero, "model get_action",
                      StateUtil.build_command(action_cmd), "max_q", max_q,
                      "selected", selected)

            # 如果模型升级了,需要清空所有缓存用作训练的行为,并且重启游戏
            if clear_cache:
                print('battle_id', self.battle_id, '模型升级,清空训练缓存')
                for hero_name in self.heros:
                    self.model_caches[hero_name].clear_cache()
                model_upgrade = True

            action_cmds.append(action_cmd)
            input_list.append(data_input)
        return action_cmds, input_list, model_upgrade
Exemplo n.º 9
0
    def get_model_actions_team(self,
                               state_info,
                               team,
                               battle_heroes,
                               debug=False):
        # 第一个人先选,然后第二个人,一直往后,后面的人会在参数中添加上之前人的行为
        # 同时可以变成按照模型给出maxq大小来决定谁先选
        # 这样的好处是所有人选择的行为就是最后执行的行为

        # 暂时为随机英雄先选
        # first_hero = heroes[0]

        # 得到当前团战范围,因为会收缩
        battle_range = self.cal_battle_range(
            len(self.state_cache) - self.battle_started)

        # 首先得到当前情况下每个英雄的基础输入集和所有无效的选择
        hero_input_map = {}
        hero_unavail_list_map = {}
        for hero in team:
            data_input = TeamBattleInput.gen_input(state_info, hero,
                                                   battle_heroes)
            data_input = np.array(data_input)
            hero_input_map[hero] = data_input

            unaval_list = TeamBattleTrainer.list_unaval_actions(
                self.act_size, state_info, hero, battle_heroes, battle_range)
            unaval_list_str = ' '.join(
                str("%.4f" % float(act)) for act in unaval_list)
            hero_unavail_list_map[hero] = unaval_list
            if debug:
                print("battle_id", self.battle_id, "tick", state_info.tick,
                      "hero", hero, "model remove_unaval_actions",
                      unaval_list_str)

        # 得到每个英雄的推荐行为
        hero_recommend_list_map = {}
        for hero in team:
            friends, opponents = TeamBattleUtil.get_friend_opponent_heros(
                battle_heroes, hero)
            hero_info = state_info.get_hero(hero)
            recommend_list = TeamBattlePolicy.select_action_by_strategy(
                state_info, hero_info, friends, opponents)
            hero_recommend_list_map[hero] = recommend_list

        # 开始挑选英雄行为,每次根据剩余英雄的最优选择,根据Q大小来排序
        action_cmds = []
        input_list = []
        left_heroes = list(team)
        model_upgrade = False
        while len(left_heroes) > 0:
            cur_max_q = -1
            chosen_hero = left_heroes[0]
            chosen_action_list = None
            for hero in left_heroes:
                # 对于之前的英雄行为,加入输入
                hero_info = state_info.get_hero(hero)
                data_input = hero_input_map[hero]
                for prev_action in action_cmds:
                    data_input = TeamBattleInput.add_other_hero_action(
                        data_input, hero_info, prev_action, debug)

                unaval_list = hero_unavail_list_map[hero]
                recommend_list = hero_recommend_list_map[hero]
                action_list, explor_value, vpreds, clear_cache = self.model_util.get_action_list(
                    self.battle_id, hero, data_input)
                action_str = ' '.join(
                    str("%.4f" % float(act)) for act in action_list)
                max_q = TeamBattleTrainer.get_max_q(action_list, unaval_list,
                                                    recommend_list)
                if debug:
                    print("battle_id", self.battle_id, "tick", state_info.tick,
                          "本轮行为候选", "hero", hero, "max_q", max_q,
                          "model action list", action_str)

                # 允许等于是为了支持max_q等于-1的情况
                if max_q >= cur_max_q:
                    cur_max_q = max_q
                    chosen_hero = hero
                    chosen_action_list = action_list

                # 如果模型升级了,需要清空所有缓存用作训练的行为,并且重启游戏
                if clear_cache:
                    print('battle_id', self.battle_id, '模型升级,清空训练缓存')
                    for hero_name in self.heros:
                        self.model_caches[hero_name].clear_cache()
                    model_upgrade = True

            # 使用最大q的英雄的行为
            unaval_list = hero_unavail_list_map[chosen_hero]
            recommend_list = hero_recommend_list_map[hero]
            friends, opponents = TeamBattleUtil.get_friend_opponent_heros(
                battle_heroes, chosen_hero)
            action_cmd, max_q, selected = TeamBattleTrainer.get_action_cmd(
                chosen_action_list, unaval_list, recommend_list, state_info,
                chosen_hero, friends, opponents)
            if debug:
                print("battle_id", self.battle_id, "tick", state_info.tick,
                      "hero", chosen_hero, "model get_action",
                      StateUtil.build_command(action_cmd), "max_q", max_q,
                      "selected", selected)

            # 更新各个状态集
            action_cmds.append(action_cmd)
            input_list.append(data_input)
            left_heroes.remove(chosen_hero)
        return action_cmds, input_list, model_upgrade
Exemplo n.º 10
0
    def build_response(self, state_info, prev_state_info, line_model, hero_names=None):

        battle_id = state_info.battleid
        tick = state_info.tick

        if tick >= 139062:
            db = 1

        action_strs=[]

        if hero_names is None:
            hero_names = [hero.hero_name for hero in state_info.heros]
        for hero_name in hero_names:
            hero = state_info.get_hero(hero_name)
            prev_hero = prev_state_info.get_hero(hero.hero_name) if prev_state_info is not None else None

            # 检查是否重启游戏
            # 线上第一个塔被摧毁


            # 如果有可以升级的技能,优先升级技能3
            skills = StateUtil.get_skills_can_upgrade(hero)
            if len(skills) > 0:
                skillid = 3 if 3 in skills else skills[0]
                update_cmd = CmdAction(hero.hero_name, CmdActionEnum.UPDATE, skillid, None, None, None, None, None, None)
                update_str = StateUtil.build_command(update_cmd)
                action_strs.append(update_str)

            # 检查周围状况
            near_enemy_heroes = StateUtil.get_nearby_enemy_heros(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
            near_enemy_units = StateUtil.get_nearby_enemy_units(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
            nearest_enemy_tower = StateUtil.get_nearest_enemy_tower(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS + 3)

            # 回城相关逻辑
            # 如果在回城中且没有被打断则继续回城,什么也不用返回
            if prev_hero is not None:
                if self.hero_strategy[hero.hero_name] == ActionEnum.town_ing and prev_hero.hp <= hero.hp \
                        and not StateUtil.if_hero_at_basement(hero):
                    if not hero.skills[6].canuse:
                        print('回城中,继续回城')
                        continue
                    else:
                        print('回城失败')

            if hero.hp <= 0:
                self.hero_strategy[hero.hero_name] = None
                continue

            # 处在少血状态是,且周围没有地方单位的情况下选择回城
            # if len(near_enemy_heroes) == 0 and len(near_enemy_units) == 0 and nearest_enemy_tower is None:
            #     if hero.hp/float(hero.maxhp) < LineTrainer.TOWN_HP_THRESHOLD:
            #         print('策略层:回城')
            #         # 检查英雄当前状态,如果在回城但是上一帧中受到了伤害,则将状态设置为正在回城,开始回城
            #         if self.hero_strategy[hero.hero_name] == ActionEnum.town_ing:
            #             if prev_hero.hp > hero.hp:
            #                 town_action = CmdAction(hero.hero_name, CmdActionEnum.CAST, 6, hero.hero_name, None, None, None, None, None)
            #                 action_str = StateUtil.build_command(town_action)
            #                 action_strs.append(action_str)
            #         # 检查英雄当前状态,如果不在回城,则将状态设置为正在回城,开始回城
            #         elif self.hero_strategy[hero.hero_name] != ActionEnum.town_ing:
            #             self.hero_strategy[hero.hero_name] = ActionEnum.town_ing
            #             town_action = CmdAction(hero.hero_name, CmdActionEnum.CAST, 6, hero.hero_name, None, None, None, None, None)
            #             action_str = StateUtil.build_command(town_action)
            #             action_strs.append(action_str)
            #
            #         # 无论上面怎么操作,玩家下面的动作应该都是在回城中,所以跳过其它的操作
            #         continue

            # 处在泉水之中的时候设置策略层为吃线
            if StateUtil.if_hero_at_basement(hero):
                if hero.hp < hero.maxhp:
                    continue

            # 撤退逻辑
            # TODO 甚至可以使用移动技能移动
            if hero.hero_name in self.hero_strategy and self.hero_strategy[hero.hero_name] == ActionEnum.retreat:
                dist = StateUtil.cal_distance(hero.pos, self.retreat_pos)
                if dist <= 2:
                    print('到达撤退点附近')
                    self.hero_strategy[hero.hero_name] = None
                elif prev_hero is not None and prev_hero.pos.to_string() == hero.pos.to_string():
                    print('英雄卡住了,取消撤退')
                    self.hero_strategy[hero.hero_name] = None
                else:
                    print('仍然在撤退 ' + str(dist))
                    continue

            # 开始根据策略决定当前的行动
            # 对线情况下,首先拿到兵线,朝最前方的兵线移动
            # 如果周围有危险(敌方单位)则启动对线模型
            # 如果周围有小兵或者塔,需要他们都是在指定线上的小兵或者塔
            line_index = 1
            near_enemy_units_in_line = StateUtil.get_units_in_line(near_enemy_units, line_index)
            nearest_enemy_tower_in_line = StateUtil.get_units_in_line([nearest_enemy_tower], line_index)
            if len(near_enemy_units_in_line) == 0 and len(nearest_enemy_tower_in_line) == 0 and (len(near_enemy_heroes) == 0 or
                    StateUtil.if_in_line(hero, line_index, 4000) == -1):
                self.hero_strategy[hero.hero_name] = ActionEnum.line_1
                # print("策略层:因为附近没有指定兵线的敌人所以开始吃线 " + hero.hero_name)
                # 跟兵线
                front_soldier = StateUtil.get_frontest_soldier_in_line(state_info, line_index, hero.team)
                if front_soldier is None:
                    action_str = StateUtil.build_action_command(hero.hero_name, 'HOLD', {})
                    action_strs.append(action_str)
                else:
                    # 得到最前方的兵线位置
                    move_action = CmdAction(hero.hero_name, CmdActionEnum.MOVE, None, None, front_soldier.pos, None, None, None, None)
                    action_str = StateUtil.build_command(move_action)
                    action_strs.append(action_str)
            else:
                # 使用模型进行决策
                # print("使用对线模型决定英雄%s的行动" % hero.hero_name)
                self.hero_strategy[hero.hero_name] = ActionEnum.line_model
                enemies = []
                enemies.extend((hero.hero_name for hero in near_enemy_heroes))
                enemies.extend((unit.unit_name for unit in near_enemy_units))
                if nearest_enemy_tower is not None:
                    enemies.append(nearest_enemy_tower.unit_name)
                # print('对线模型决策,因为周围有敌人 ' + ' ,'.join(enemies))

                # 目前对线只涉及到两名英雄
                rival_hero = '28' if hero.hero_name == '27' else '27'
                action = line_model.get_action(prev_state_info, state_info, hero.hero_name, rival_hero)
                action_str = StateUtil.build_command(action)
                action_strs.append(action_str)

                # 如果是要求英雄施法回城,更新英雄状态,这里涉及到后续多帧是否等待回城结束
                if action.action == CmdActionEnum.CAST and int(action.skillid) == 6:
                    print("英雄%s释放了回城" % hero_name)
                    self.hero_strategy[hero.hero_name] = ActionEnum.town_ing

                # 如果是选择了撤退,进行特殊标记,会影响到后续的行为
                if action.action == CmdActionEnum.RETREAT:
                    print("英雄%s释放了撤退,撤退点为%s" % (hero_name, action.tgtpos.to_string()))
                    self.hero_strategy[hero.hero_name] = ActionEnum.retreat
                    self.retreat_pos = action.tgtpos

                # 保存action信息到状态帧中
                state_info.add_action(action)
        return action_strs