Exemplo n.º 1
0
    def train_line_model(self, raw_state_str):
        self.save_raw_log(raw_state_str)
        prev_state_info = self.state_cache[-1] if len(self.state_cache) > 0 else None

        # 解析客户端发送的请求
        obj = JSON.loads(raw_state_str)
        raw_state_info = StateInfo.decode(obj)

        # 重开时候会有以下报文  {"wldstatic":{"ID":9051},"wldruntime":{"State":0}}
        if raw_state_info.tick == -1:
            return {"ID": raw_state_info.battleid, "tick": -1}

        if raw_state_info.tick >= 193512:
            debug_i = 1

        # 根据之前帧更新当前帧信息,变成完整的信息
        # 发现偶然的情况下,其实的tick会是66,然后第二条tick是528
        if raw_state_info.tick <= StateUtil.TICK_PER_STATE and (prev_state_info is None or prev_state_info.tick > raw_state_info.tick):
            print("clear")
            prev_state_info = None
            self.state_cache = []
            self.hero_strategy = {}
            self.model1_just_dead = 0
            self.model2_just_dead = 0
        elif prev_state_info is not None and prev_state_info.tick >= raw_state_info.tick:
            print("clear %s %s" % (prev_state_info.tick, raw_state_info.tick))
            self.state_cache = []
        elif prev_state_info is None and raw_state_info.tick > StateUtil.TICK_PER_STATE:
            # 不是开始帧的话直接返回重启游戏
            # 还有偶然情况下首帧没有tick(即-1)的情况,这种情况下只能重启本场战斗
            print(self.battle_id, '不是开始帧的话直接返回重启游戏', raw_state_info.tick)
            action_strs = [StateUtil.build_action_command('27', 'RESTART', None)]
            rsp_obj = {"ID": raw_state_info.battleid, "tick": raw_state_info.tick, "cmd": action_strs}
            rsp_str = JSON.dumps(rsp_obj)
            return rsp_str
        state_info = StateUtil.update_state_log(prev_state_info, raw_state_info)

        # Test
        hero = state_info.get_hero(self.model1_hero)
        if hero is None or hero.hp is None:
            print(self.battle_id, self.model1_hero, state_info.tick, '读取信息为空,异常')
            print(self.battle_id, '不是开始帧的话直接返回重启游戏', raw_state_info.tick)
            action_strs = [StateUtil.build_action_command('27', 'RESTART', None)]
            rsp_obj = {"ID": raw_state_info.battleid, "tick": raw_state_info.tick, "cmd": action_strs}
            rsp_str = JSON.dumps(rsp_obj)
            return rsp_str

        # 持久化
        self.state_cache.append(state_info)
        # self.save_state_log(state_info)

        # 首先得到模型的选择,同时会将选择action记录到当前帧中
        action_strs = []
        restart = False
        if self.model1_hero is not None and self.real_hero != self.model1_hero:
            actions_model1, restart = self.build_response(self.state_cache, -1, self.model1_hero)
            action_strs.extend(actions_model1)
        if self.model2_hero is not None and not restart and self.real_hero != self.model2_hero:
            actions_model2, restart = self.build_response(self.state_cache, -1, self.model2_hero)
            action_strs.extend(actions_model2)

        # 计算奖励值,如果有真实玩家,因为需要推测行为的原因,则多往前回朔几帧
        reward_state_idx = -2 if self.real_hero is None else -4
        new = 0
        if len(self.state_cache) + reward_state_idx > 0:
            new, loss_team = self.if_restart(self.state_cache, reward_state_idx)
            if self.model1_hero is not None:
                self.remember_replay(self.state_cache, reward_state_idx, self.model1_cache, self.model_process,
                                         self.model1_hero, self.model2_hero, new, loss_team)
            if self.model2_hero is not None:
                self.remember_replay(self.state_cache, reward_state_idx, self.model2_cache, self.model_process,
                                         self.model2_hero, self.model1_hero, new, loss_team)

        # 这里为了尽量减少重启次数,在训练结束之后,我们只是清空上个模型的行为串
        if restart:
            self.model1_cache.clear_cache()
            self.model2_cache.clear_cache()
            # 当前帧返回空的行为串
            action_strs = {}

        # 如果达到了重开条件,重新开始游戏
        # 当线上第一个塔被摧毁时候重开
        if new == 1:
            action_strs = [StateUtil.build_action_command('27', 'RESTART', None)]

        # 返回结果给游戏端
        rsp_obj = {"ID": state_info.battleid, "tick": state_info.tick, "cmd": action_strs}
        rsp_str = JSON.dumps(rsp_obj)
        return rsp_str
Exemplo n.º 2
0
    def train_line_model(self, raw_state_str):
        self.save_raw_log(raw_state_str)
        prev_state_info = self.state_cache[-1] if len(self.state_cache) > 0 else None

        # 解析客户端发送的请求
        obj = JSON.loads(raw_state_str)
        raw_state_info = StateInfo.decode(obj)

        # 重开时候会有以下报文  {"wldstatic":{"ID":9051},"wldruntime":{"State":0}}
        if raw_state_info.tick == -1:
            return ''

        if raw_state_info.tick == 285516:
            debug_i = 1

        # 根据之前帧更新当前帧信息,变成完整的信息
        if raw_state_info.tick <= StateUtil.TICK_PER_STATE:
            print("clear")
            self.state_cache = []
            prev_state_info = None
        elif prev_state_info is not None and prev_state_info.tick >= raw_state_info.tick:
            print ("clear %s %s" % (prev_state_info.tick, raw_state_info.tick))
            self.state_cache = []
        state_info = StateUtil.update_state_log(prev_state_info, raw_state_info)

        # 首先得到模型的选择,同时会将选择action记录到当前帧中
        action_strs = self.build_response(state_info, prev_state_info, self.model1, self.model1_heros)
        if self.model2_heros is not None:
            actions_model2 = self.build_response(state_info, prev_state_info, self.model2, self.model2_heros)
            action_strs.extend(actions_model2)

        # 缓存
        self.state_cache.append(state_info)
        self.save_state_log(state_info)

        # 更新玩家行为以及奖励值,有一段时间延迟
        reward_state_idx = len(self.state_cache) - LineModel.REWARD_DELAY_STATE_NUM
        # print('reward_state_idx: ' + str(reward_state_idx))
        state_with_reward = None
        if reward_state_idx > 1:
            if self.state_cache[reward_state_idx].tick >= 686004:
                debug = 1
            self.guess_hero_actions(reward_state_idx, self.real_heros)
            prev_4_m = self.state_cache[reward_state_idx - 1]
            state_with_reward = LineModel_DQN.update_state_rewards(self.state_cache, reward_state_idx)

        if state_with_reward is not None:
            # 将中间结果写入文件
            next_state_4_m = self.state_cache[reward_state_idx + 1]
            self.save_reward_log(state_with_reward)
            added = self.model1.remember(prev_4_m, state_with_reward, next_state_4_m)

            # 学习
            if added:
                model1_memory_len = self.model1.get_memory_size()
                if self.model1.if_replay(64):
                    # print ('开始模型训练')
                    self.model1.replay(64)
                    if model1_memory_len > 0 and model1_memory_len % 1000 == 0:
                        self.model1.save(self.model1_save_header + str(self.model1.get_memory_size()) + '/model')
                    # print ('结束模型训练')

            if self.model2 is not None:
                # TODO 过滤之后放入相应的模型
                added = self.model2.remember(prev_4_m, state_with_reward, next_state_4_m)

                # 学习
                if added:
                    model2_memory_len = self.model2.get_memory_size()
                    if self.model2.if_replay(64):
                        # print ('开始模型训练')
                        self.model2.replay(64)
                        if model2_memory_len > 0 and model2_memory_len % 1000 == 0:
                            self.model2.save(self.model2_save_header + str(self.model2.get_memory_size()) + '/model')
                        # print ('结束模型训练')

        # 如果达到了重开条件,重新开始游戏
        # 当线上第一个塔被摧毁时候重开
        if StateUtil.if_first_tower_destroyed_in_middle_line(state_info):
            print('重新开始游戏')
            action_strs = [StateUtil.build_action_command('27', 'RESTART', None)]

        # 返回结果给游戏端
        rsp_obj = {"ID": state_info.battleid, "tick": state_info.tick, "cmd": action_strs}
        rsp_str = JSON.dumps(rsp_obj)
        return rsp_str
Exemplo n.º 3
0
    def build_response(self, raw_state_str):
        self.save_raw_log(raw_state_str)
        prev_state_info = self.state_cache[-1] if len(
            self.state_cache) > 0 else None
        response_strs = []

        # 解析客户端发送的请求
        obj = JSON.loads(raw_state_str)
        raw_state_info = StateInfo.decode(obj)

        # 重开时候会有以下报文  {"wldstatic":{"ID":9051},"wldruntime":{"State":0}}
        if raw_state_info.tick == -1:
            return {"ID": raw_state_info.battleid, "tick": -1}

        if raw_state_info.tick <= StateUtil.TICK_PER_STATE and (
                prev_state_info is None
                or prev_state_info.tick > raw_state_info.tick):
            print("clear")
            prev_state_info = None
            self.state_cache = []
            self.battle_started = -1
            self.battle_heroes_cache = []
            self.dead_heroes = []
            self.dead_heroes_cache = []
            self.data_inputs = []
            self.rebooting = False
        elif prev_state_info is None and raw_state_info.tick > StateUtil.TICK_PER_STATE:
            # 不是开始帧的话直接返回重启游戏
            # 还有偶然情况下首帧没有tick(即-1)的情况,这种情况下只能重启本场战斗
            print("battle_id", self.battle_id, "tick", raw_state_info.tick,
                  '不是开始帧的话直接返回重启游戏', raw_state_info.tick)
            action_strs = [
                StateUtil.build_action_command('27', 'RESTART', None)
            ]
            rsp_obj = {
                "ID": raw_state_info.battleid,
                "tick": raw_state_info.tick,
                "cmd": action_strs
            }
            rsp_str = JSON.dumps(rsp_obj)
            return rsp_str

        state_info = StateUtil.update_state_log(prev_state_info,
                                                raw_state_info)
        hero = state_info.get_hero("27")

        if hero is None or hero.hp is None:
            # 偶然情况处理,如果找不到英雄,直接重开
            print("battle_id", self.battle_id, "tick", state_info.tick,
                  '不是开始帧的话直接返回重启游戏', raw_state_info.tick)
            action_strs = [
                StateUtil.build_action_command('27', 'RESTART', None)
            ]
            rsp_obj = {
                "ID": raw_state_info.battleid,
                "tick": raw_state_info.tick,
                "cmd": action_strs
            }
            rsp_str = JSON.dumps(rsp_obj)
            return rsp_str

        # 战斗前准备工作
        if len(self.state_cache) == 0:
            # 第一帧的时候,添加金钱和等级
            for hero in self.heros:
                add_gold_cmd = CmdAction(hero, CmdActionEnum.ADDGOLD, None,
                                         None, None, None, None, None, None)
                add_gold_cmd.gold = 3000
                add_gold_str = StateUtil.build_command(add_gold_cmd)
                response_strs.append(add_gold_str)

                add_lv_cmd = CmdAction(hero, CmdActionEnum.ADDLV, None, None,
                                       None, None, None, None, None)
                add_lv_cmd.lv = 9
                add_lv_str = StateUtil.build_command(add_lv_cmd)
                response_strs.append(add_lv_str)
        elif len(self.state_cache) > 1:
            # 第二帧时候开始,升级技能,购买装备,这个操作可能会持续好几帧
            for hero in self.heros:
                upgrade_cmd = self.upgrade_skills(state_info, hero)
                if upgrade_cmd is not None:
                    response_strs.append(upgrade_cmd)

                buy_cmd = self.buy_equip(state_info, hero)
                if buy_cmd is not None:
                    response_strs.append(buy_cmd)

        for hero in self.heros:
            # 判断是否英雄死亡
            if prev_state_info is not None:
                dead = StateUtil.if_hero_dead(prev_state_info, state_info,
                                              hero)
                if dead == 1 and hero not in self.dead_heroes:
                    print("battle_id", self.battle_id, "tick", state_info.tick,
                          "英雄死亡", hero, "tick", state_info.tick)
                    self.dead_heroes.append(hero)

        # 首先要求所有英雄站到团战圈内,然后开始模型计算,这时候所有的行动都有模型来决定
        # 需要过滤掉无效的行动,同时屏蔽会离开战斗圈的移动
        #TODO 开始团战后,如果有偶尔的技能移动会离开圈,则拉回来

        # 这里会排除掉死亡的英雄,他们不需要再加入团战
        # 团战范围在收缩
        battle_range = self.cal_battle_range(
            len(self.state_cache) - self.battle_started)
        heroes_in_range, heroes_out_range = TeamBattleTrainer.all_in_battle_range(
            state_info, self.heros, self.dead_heroes, battle_range)

        # 存活英雄
        battle_heros = list(heroes_in_range)
        battle_heros.extend(heroes_out_range)

        # 缓存参战情况和死亡情况,用于后续训练
        self.battle_heroes_cache.append(battle_heros)
        self.dead_heroes_cache.append(list(self.dead_heroes))

        if state_info.tick >= 142560:
            debuginfo = True

        # 团战还没有开始,有英雄还在圈外
        if len(heroes_out_range) > 0:
            if self.battle_started > -1:
                print('battle_id', self.battle_id, "战斗已经开始,但是为什么还有英雄在团战圈外",
                      ','.join(heroes_out_range), "battle_range", battle_range)

            # 移动到两个开始战斗地点附近
            # 如果是团战开始之后,移动到团战中心点
            for hero in heroes_out_range:
                start_point_x = randint(0, 8000)
                start_point_z = TeamBattleTrainer.BATTLE_CIRCLE_RADIUS_BATTLE_START * 1000 if self.battle_started == -1 else 0
                start_point_z += randint(-4000, 4000)
                if TeamBattleUtil.get_hero_team(hero) == 0:
                    start_point_z *= -1
                start_point_z += TeamBattleTrainer.BATTLE_POINT_Z
                tgt_pos = PosStateInfo(start_point_x, 0, start_point_z)
                move_action = CmdAction(hero, CmdActionEnum.MOVE, None, None,
                                        tgt_pos, None, None, None, None)
                mov_cmd_str = StateUtil.build_command(move_action)
                response_strs.append(mov_cmd_str)
        # 团战已经开始
        elif not self.rebooting:
            if self.battle_started == -1:
                self.battle_started = len(self.state_cache)

            # 对特殊情况。比如德古拉使用大招hp会变1,修改帧状态
            state_info, _ = TeamBattlePolicy.modify_status_4_draculas_invincible(
                state_info, self.state_cache)

            # action_cmds, input_list, model_upgrade = self.get_model_actions(state_info, heroes_in_range)
            # 跟队伍,每个队伍得到行为
            team_a, team_b = TeamBattleUtil.get_teams(heroes_in_range)
            team_actions_a, input_list_a, model_upgrade_a = self.get_model_actions_team(
                state_info, team_a, heroes_in_range)
            team_actions_b, input_list_b, model_upgrade_b = self.get_model_actions_team(
                state_info, team_b, heroes_in_range)

            # 如果模型已经开战,重启战斗
            if (model_upgrade_a or model_upgrade_b
                ) and self.battle_started < len(self.state_cache) + 1:
                print("battle_id", self.battle_id, "因为模型升级,重启战斗",
                      self.battle_started, len(self.state_cache))
                action_strs = [
                    StateUtil.build_action_command('27', 'RESTART', None)
                ]
                rsp_obj = {
                    "ID": raw_state_info.battleid,
                    "tick": raw_state_info.tick,
                    "cmd": action_strs
                }
                rsp_str = JSON.dumps(rsp_obj)
                return rsp_str
            data_input_map = {}
            for action_cmd, data_input in zip(team_actions_a + team_actions_b,
                                              input_list_a + input_list_b):
                action_str = StateUtil.build_command(action_cmd)
                response_strs.append(action_str)
                state_info.add_action(action_cmd)
                data_input_map[action_cmd.hero_name] = data_input

            # 缓存所有的模型输入,用于后续训练
            self.data_inputs.append(data_input_map)

        # 添加记录到缓存中
        self.state_cache.append(state_info)

        # 将模型行为加入训练缓存,同时计算奖励值
        # 注意:因为奖励值需要看后续状态,所以这个计算会有延迟
        last_x_index = 2
        if self.battle_started > -1 and len(self.data_inputs) >= last_x_index:
            if self.rebooting:
                # 测试发现重启指令发出之后,可能下一帧还没开始重启战斗,这种情况下抛弃训练
                print("battle_id", self.battle_id, "tick", state_info.tick,
                      "warn", "要求重启战斗,但是还在收到后续帧状态, 继续重启")

                # 重启游戏
                response_strs = [
                    StateUtil.build_action_command('27', 'RESTART', None)
                ]
            else:
                state_index = len(self.state_cache) - last_x_index
                win, win_team, left_heroes = self.remember_replay_heroes(
                    -last_x_index, state_index, battle_range)

                # 团战结束条件
                # 首先战至最后一人
                # all_in_team = TeamBattleUtil.all_in_one_team(heroes_in_range)
                # if self.battle_started:
                #     if len(self.dead_heroes) >= 9 or (len(self.dead_heroes) >= 5 and all_in_team > -1):
                if win == 1:
                    # 重启游戏
                    print('battle_id', self.battle_id, "重启游戏", "剩余人员",
                          ','.join(left_heroes))
                    response_strs = [
                        StateUtil.build_action_command('27', 'RESTART', None)
                    ]
                    self.rebooting = True
        # battle_heros = self.search_team_battle(state_info)
        # if len(battle_heros) > 0:
        #     print("team battle heros", ';'.join(battle_heros))
        #
        # heros_need_model = []
        # for hero in self.heros:
        #     # 判断是否英雄死亡
        #     if prev_state_info is not None:
        #         dead = StateUtil.if_hero_dead(prev_state_info, state_info, hero)
        #         if dead == 1 and hero not in self.dead_heroes:
        #             self.dead_heroes.append(hero)
        #
        #     # 复活的英雄不要再去参团
        #     if hero in self.dead_heroes:
        #         continue
        #
        #     # near_enemy_heroes = StateUtil.get_nearby_enemy_heros(state_info, hero, TeamBattleTrainer.MODEL_RANGE)
        #     if hero not in battle_heros:
        #         # 移动到团战点附近,添加部分随机
        #         rdm_delta_x = randint(0, 1000)
        #         rdm_delta_z = randint(0, 1000)
        #         tgt_pos = PosStateInfo(TeamBattleTrainer.BATTLE_POINT_X + rdm_delta_x, 0, TeamBattleTrainer.BATTLE_POINT_Z + rdm_delta_z)
        #         move_action = CmdAction(hero, CmdActionEnum.MOVE, None, None, tgt_pos, None, None, None, None)
        #         mov_cmd_str = StateUtil.build_command(move_action)
        #         response_strs.append(mov_cmd_str)
        #     else:
        #         # 启动模型决策
        #         heros_need_model.append(hero)
        #
        # if len(heros_need_model) > 0:
        #     action_cmds = self.get_model_actions(state_info, heros_need_model)
        #     for action_cmd in action_cmds:
        #         action_str = StateUtil.build_command(action_cmd)
        #         response_strs.append(action_str)
        #         state_info.add_action(action_cmd)

        #TODO 记录模型输出,用于后续训练

        # 返回结果给游戏端
        rsp_obj = {
            "ID": state_info.battleid,
            "tick": state_info.tick,
            "cmd": response_strs
        }
        rsp_str = JSON.dumps(rsp_obj)
        print('battle_id', self.battle_id, 'response', rsp_str)
        return rsp_str
Exemplo n.º 4
0
    def build_response(self, state_info, prev_state_info, line_model, hero_names=None):

        battle_id = state_info.battleid
        tick = state_info.tick

        if tick >= 139062:
            db = 1

        action_strs=[]

        if hero_names is None:
            hero_names = [hero.hero_name for hero in state_info.heros]
        for hero_name in hero_names:
            hero = state_info.get_hero(hero_name)
            prev_hero = prev_state_info.get_hero(hero.hero_name) if prev_state_info is not None else None

            # 检查是否重启游戏
            # 线上第一个塔被摧毁


            # 如果有可以升级的技能,优先升级技能3
            skills = StateUtil.get_skills_can_upgrade(hero)
            if len(skills) > 0:
                skillid = 3 if 3 in skills else skills[0]
                update_cmd = CmdAction(hero.hero_name, CmdActionEnum.UPDATE, skillid, None, None, None, None, None, None)
                update_str = StateUtil.build_command(update_cmd)
                action_strs.append(update_str)

            # 检查周围状况
            near_enemy_heroes = StateUtil.get_nearby_enemy_heros(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
            near_enemy_units = StateUtil.get_nearby_enemy_units(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS)
            nearest_enemy_tower = StateUtil.get_nearest_enemy_tower(state_info, hero.hero_name, StateUtil.LINE_MODEL_RADIUS + 3)

            # 回城相关逻辑
            # 如果在回城中且没有被打断则继续回城,什么也不用返回
            if prev_hero is not None:
                if self.hero_strategy[hero.hero_name] == ActionEnum.town_ing and prev_hero.hp <= hero.hp \
                        and not StateUtil.if_hero_at_basement(hero):
                    if not hero.skills[6].canuse:
                        print('回城中,继续回城')
                        continue
                    else:
                        print('回城失败')

            if hero.hp <= 0:
                self.hero_strategy[hero.hero_name] = None
                continue

            # 处在少血状态是,且周围没有地方单位的情况下选择回城
            # if len(near_enemy_heroes) == 0 and len(near_enemy_units) == 0 and nearest_enemy_tower is None:
            #     if hero.hp/float(hero.maxhp) < LineTrainer.TOWN_HP_THRESHOLD:
            #         print('策略层:回城')
            #         # 检查英雄当前状态,如果在回城但是上一帧中受到了伤害,则将状态设置为正在回城,开始回城
            #         if self.hero_strategy[hero.hero_name] == ActionEnum.town_ing:
            #             if prev_hero.hp > hero.hp:
            #                 town_action = CmdAction(hero.hero_name, CmdActionEnum.CAST, 6, hero.hero_name, None, None, None, None, None)
            #                 action_str = StateUtil.build_command(town_action)
            #                 action_strs.append(action_str)
            #         # 检查英雄当前状态,如果不在回城,则将状态设置为正在回城,开始回城
            #         elif self.hero_strategy[hero.hero_name] != ActionEnum.town_ing:
            #             self.hero_strategy[hero.hero_name] = ActionEnum.town_ing
            #             town_action = CmdAction(hero.hero_name, CmdActionEnum.CAST, 6, hero.hero_name, None, None, None, None, None)
            #             action_str = StateUtil.build_command(town_action)
            #             action_strs.append(action_str)
            #
            #         # 无论上面怎么操作,玩家下面的动作应该都是在回城中,所以跳过其它的操作
            #         continue

            # 处在泉水之中的时候设置策略层为吃线
            if StateUtil.if_hero_at_basement(hero):
                if hero.hp < hero.maxhp:
                    continue

            # 撤退逻辑
            # TODO 甚至可以使用移动技能移动
            if hero.hero_name in self.hero_strategy and self.hero_strategy[hero.hero_name] == ActionEnum.retreat:
                dist = StateUtil.cal_distance(hero.pos, self.retreat_pos)
                if dist <= 2:
                    print('到达撤退点附近')
                    self.hero_strategy[hero.hero_name] = None
                elif prev_hero is not None and prev_hero.pos.to_string() == hero.pos.to_string():
                    print('英雄卡住了,取消撤退')
                    self.hero_strategy[hero.hero_name] = None
                else:
                    print('仍然在撤退 ' + str(dist))
                    continue

            # 开始根据策略决定当前的行动
            # 对线情况下,首先拿到兵线,朝最前方的兵线移动
            # 如果周围有危险(敌方单位)则启动对线模型
            # 如果周围有小兵或者塔,需要他们都是在指定线上的小兵或者塔
            line_index = 1
            near_enemy_units_in_line = StateUtil.get_units_in_line(near_enemy_units, line_index)
            nearest_enemy_tower_in_line = StateUtil.get_units_in_line([nearest_enemy_tower], line_index)
            if len(near_enemy_units_in_line) == 0 and len(nearest_enemy_tower_in_line) == 0 and (len(near_enemy_heroes) == 0 or
                    StateUtil.if_in_line(hero, line_index, 4000) == -1):
                self.hero_strategy[hero.hero_name] = ActionEnum.line_1
                # print("策略层:因为附近没有指定兵线的敌人所以开始吃线 " + hero.hero_name)
                # 跟兵线
                front_soldier = StateUtil.get_frontest_soldier_in_line(state_info, line_index, hero.team)
                if front_soldier is None:
                    action_str = StateUtil.build_action_command(hero.hero_name, 'HOLD', {})
                    action_strs.append(action_str)
                else:
                    # 得到最前方的兵线位置
                    move_action = CmdAction(hero.hero_name, CmdActionEnum.MOVE, None, None, front_soldier.pos, None, None, None, None)
                    action_str = StateUtil.build_command(move_action)
                    action_strs.append(action_str)
            else:
                # 使用模型进行决策
                # print("使用对线模型决定英雄%s的行动" % hero.hero_name)
                self.hero_strategy[hero.hero_name] = ActionEnum.line_model
                enemies = []
                enemies.extend((hero.hero_name for hero in near_enemy_heroes))
                enemies.extend((unit.unit_name for unit in near_enemy_units))
                if nearest_enemy_tower is not None:
                    enemies.append(nearest_enemy_tower.unit_name)
                # print('对线模型决策,因为周围有敌人 ' + ' ,'.join(enemies))

                # 目前对线只涉及到两名英雄
                rival_hero = '28' if hero.hero_name == '27' else '27'
                action = line_model.get_action(prev_state_info, state_info, hero.hero_name, rival_hero)
                action_str = StateUtil.build_command(action)
                action_strs.append(action_str)

                # 如果是要求英雄施法回城,更新英雄状态,这里涉及到后续多帧是否等待回城结束
                if action.action == CmdActionEnum.CAST and int(action.skillid) == 6:
                    print("英雄%s释放了回城" % hero_name)
                    self.hero_strategy[hero.hero_name] = ActionEnum.town_ing

                # 如果是选择了撤退,进行特殊标记,会影响到后续的行为
                if action.action == CmdActionEnum.RETREAT:
                    print("英雄%s释放了撤退,撤退点为%s" % (hero_name, action.tgtpos.to_string()))
                    self.hero_strategy[hero.hero_name] = ActionEnum.retreat
                    self.retreat_pos = action.tgtpos

                # 保存action信息到状态帧中
                state_info.add_action(action)
        return action_strs