Exemplo n.º 1
0
def solve(cur_list):
	print cur_list
	if len(cur_list) == LIST_LENGTH:
		print cur_list, sum(cur_list)
		exit()
	start = 1 if cur_list == [] else inb(cur_list[-1], p) + 1
	for i in p[start:MAX]:
		recurse = True
		for j in cur_list:
			pairing = int(str(j) + str(i))
			if pair_dict.get(pairing) != None:
				recurse = False
				break
		if recurse:
			solve(cur_list + [i])
Exemplo n.º 2
0
Arquivo: 72.py Projeto: andermic/euler
It can be seen that there are 21 elements in this set.

How many elements would be contained in the set of reduced proper fractions for d <= 1,000,000?
"""

# return int(n * reduce(lambda x,y: x*y, [1-(1./i) for i in pfact]))

from util import inb, pf, primes, totient
from math import sqrt

end = 10 ** 6
ps = primes(end)
ps_sq = primes(int(sqrt(end)))
pfacts = {}

# print ps, inb(2, ps)
for i in xrange(2, end + 1):
    if inb(i, ps) != -1:
        pfacts[i] = (set([i]), i - 1)
    else:
        for prime in ps_sq:
            if i % prime == 0:
                pf, totient = pfacts[i / prime]
                if prime in pf:
                    pfacts[i] = (pf, totient * prime)
                else:
                    pfacts[i] = (pf.union(set([prime])), totient * (prime - 1))
                break

print(sum([pfacts[i][1] for i in xrange(2, end + 1)]))
Exemplo n.º 3
0
#! /usr/bin/python

from util import primes
from util import inb
p = primes(1000000)

s = []
res = 21
for i in range(len(p)):
    s.append(sum(p[i:i+res]))
    if s[i] > 1000000:
        break

while s != []:
    res += 2
    for i in range(len(s)):
        s[i] += p[i+res-1] + p[i+res-2]
        if s[i] > 1000000:
            s = s[:i]
            break
        if inb(s[i],p):
            print s[i],res
Exemplo n.º 4
0
#! /usr/bin/python

from util import primes
from util import inb
p = primes(1000000)

s = []
res = 21
for i in range(len(p)):
    s.append(sum(p[i:i + res]))
    if s[i] > 1000000:
        break

while s != []:
    res += 2
    for i in range(len(s)):
        s[i] += p[i + res - 1] + p[i + res - 2]
        if s[i] > 1000000:
            s = s[:i]
            break
        if inb(s[i], p):
            print s[i], res
Exemplo n.º 5
0
print "Done\n"

pair_dict = {}

# Use a simple recursive backtracking algorithm
def solve(cur_list):
	print cur_list
	if len(cur_list) == LIST_LENGTH:
		print cur_list, sum(cur_list)
		exit()
	start = 1 if cur_list == [] else inb(cur_list[-1], p) + 1
	for i in p[start:MAX]:
		recurse = True
		for j in cur_list:
			pairing = int(str(j) + str(i))
			if pair_dict.get(pairing) != None:
				recurse = False
				break
		if recurse:
			solve(cur_list + [i])


# Precompute pairs of primes that when concatenated together produce other primes
for i in range(1,MAX):
	print "%d/%d" % (i,MAX)
	for j in range(i+1,MAX):
		concat = (int(str(p[i]) + str(p[j])), int(str(p[j]) + str(p[i])))
		if ((concat[0] < PRIMES_TO) and (len([k for k in concat if inb(k,p) != False]) != 2)) or (len([k for k in concat if is_prime(k,p) != False]) != 2):
			pair_dict[concat[0]] = True
solve([])