Exemplo n.º 1
0
Arquivo: SSAH.py Projeto: StatML/SSAH
    def test(self, phase):
        test = {}
        print '=========================================================='
        print '  ====                 Test map in all              ===='
        print '=========================================================='

        if phase == 'test' and self.load(self.checkpoint_dir):
            print(" [*] Load SUCCESS")
        else:
            print(" [!] Load failed...")
        test['qBX'] = self.generate_code(self.query_X, self.bit, "image")
        test['qBY'] = self.generate_code(self.query_Y, self.bit, "text")
        test['rBX'] = self.generate_code(self.retrieval_X, self.bit, "image")
        test['rBY'] = self.generate_code(self.retrieval_Y, self.bit, "text")

        test['mapi2t'] = calc_map(test['qBX'], test['rBY'], self.query_L, self.retrieval_L)
        test['mapt2i'] = calc_map(test['qBY'], test['rBX'], self.query_L, self.retrieval_L)
        test['mapi2i'] = calc_map(test['qBX'], test['rBX'], self.query_L, self.retrieval_L)
        test['mapt2t'] = calc_map(test['qBY'], test['rBY'], self.query_L, self.retrieval_L)
        print '=================================================='
        print '...test map: map(i->t): %3.3f, map(t->i): %3.3f' % (test['mapi2t'], test['mapt2i'])
        print '...test map: map(t->t): %3.3f, map(i->i): %3.3f' % (test['mapt2t'], test['mapi2i'])
        print '=================================================='

            # Save hash code
        datasetStr = DATA_DIR.split('/')[-1]
        dataset_bit_net = datasetStr + str(bit) + netStr
        savePath = '/'.join([os.getcwd(), 'Savecode', dataset_bit_net + '.mat'])
        if os.path.exists(savePath):
            os.remove(savePath)
        sio.savemat(dataset_bit_net, {'Qi': test['qBX'], 'Qt': test['qBY'],
                                      'Di': test['rBX'], 'Dt': test['rBY'],
                                      'retrieval_L': L['retrieval'], 'query_L': L['query']})
Exemplo n.º 2
0
    def test(self, phase):
        test = {}
        print '=========================================================='
        print '  ====                 Test map in all              ===='
        print '=========================================================='

        if phase == 'test' and self.load(self.checkpoint_dir):
            print(" [*] Load SUCCESS")
        else:
            print(" [!] Load failed...")
        test['qBX'] = self.generate_code(self.query_X, self.bit, "image")
        test['qBY'] = self.generate_code(self.query_Y, self.bit, "text")
        test['rBX'] = self.generate_code(self.retrieval_X, self.bit, "image")
        test['rBY'] = self.generate_code(self.retrieval_Y, self.bit, "text")

        test['mapi2t'] = calc_map(test['qBX'], test['rBY'], self.query_L,
                                  self.retrieval_L)
        test['mapt2i'] = calc_map(test['qBY'], test['rBX'], self.query_L,
                                  self.retrieval_L)
        test['mapi2i'] = calc_map(test['qBX'], test['rBX'], self.query_L,
                                  self.retrieval_L)
        test['mapt2t'] = calc_map(test['qBY'], test['rBY'], self.query_L,
                                  self.retrieval_L)
        print '=================================================='
        print '...test map: map(i->t): %3.3f, map(t->i): %3.3f' % (
            test['mapi2t'], test['mapt2i'])
        print '...test map: map(t->t): %3.3f, map(i->i): %3.3f' % (
            test['mapt2t'], test['mapi2i'])
        print '=================================================='

        # Save hash code
        datasetStr = DATA_DIR.split('/')[-1]
        dataset_bit_net = datasetStr + str(bit)
        mat_name = dataset_dir + '_' + str(bit) + '.mat'
        savePath = os.path.join(os.getcwd(), mat_name)
        if os.path.exists(savePath):
            os.remove(savePath)
        sio.savemat(
            dataset_bit_net, {
                'Qi': test['qBX'],
                'Qt': test['qBY'],
                'Di': test['rBX'],
                'Dt': test['rBY'],
                'retrieval_L': retrieval_L,
                'query_L': query_L
            })
Exemplo n.º 3
0
    def _Evaluate(self, Modal_X, X_name, Modal_Y, Y_name, query_L,
                  retrieval_L):

        Hashcodes_QX = self._generate_code(Modal_X, X_name)
        Hashcodes_QY = self._generate_code(Modal_Y, Y_name)
        Hashcodes_RX = self._generate_code(
            Param['Img_retrieval'],
            "image",
        )
        Hashcodes_RY = self._generate_code(
            Param['Txt_retrieval'],
            "text",
        )

        mapx2y = calc_map(Hashcodes_QX, Hashcodes_RY, query_L, retrieval_L)
        mapx2x = calc_map(Hashcodes_QX, Hashcodes_RX, query_L, retrieval_L)
        mapy2x = calc_map(Hashcodes_QY, Hashcodes_RX, query_L, retrieval_L)
        mapy2y = calc_map(Hashcodes_QY, Hashcodes_RY, query_L, retrieval_L)

        return mapx2y, mapy2x, mapx2x, mapy2y, Hashcodes_QX, Hashcodes_QY, Hashcodes_RX, Hashcodes_RY
Exemplo n.º 4
0
    def Train(self):
        init_op = tf.global_variables_initializer()
        self.sess.run(init_op)

        self.var['F'] = np.random.randn(self.num_train, self.bit)  #Img
        self.var['B_F'] = np.sign(self.var['F'])  # Img
        self.var['Fea_F'] = np.random.randn(self.num_train,
                                            SEMANTIC_EMBED)  #Img
        self.var['G'] = np.random.randn(self.num_train, self.bit)  #Txt
        self.var['B_G'] = np.sign(self.var['G'])  #Txt
        self.var['Fea_G'] = np.random.randn(self.num_train,
                                            SEMANTIC_EMBED)  #Txt
        self.var['H'] = np.random.randn(self.num_train, self.bit)  #Label
        self.var['B_H'] = np.sign(self.var['H'])  #Label
        self.var['M'] = np.random.randn(self.num_train, self.bit)  #Graph
        self.var['B_M'] = np.sign(self.var['M'])  #Graph
        self.var['Fea_M'] = np.random.randn(self.num_train,
                                            SEMANTIC_EMBED)  #Graph
        self.var['L_H'] = np.random.randn(self.num_train, self.numClass)
        self.var['L_M'] = np.random.randn(self.num_train, self.numClass)
        # var['LABEL_L'] = np.random.randn(self.num_train, self.numClass)
        # var['LABEL_I'] = np.random.randn(self.num_train, self.numClass)
        # var['LABEL_T'] = np.random.randn(self.num_train, self.numClass)
        # var['feat_I'] = np.random.randn(self.num_train, self.SEMANTIC_EMBED)
        # var['feat_T'] = np.random.randn(self.num_train, self.SEMANTIC_EMBED)
        # var['feat_L'] = np.random.randn(self.num_train, self.SEMANTIC_EMBED)

        # Iterations
        for epoch in range(Epoch):
            results = {}
            results['loss_labNet'] = []
            results['loss_imgNet'] = []
            results['loss_txtNet'] = []
            results['Loss_D'] = []
            results['mapl2l'] = []
            results['mapi2i'] = []
            results['mapt2t'] = []

            if epoch % 1 == 0:
                print '++++++++Start train++++++++'
                if epoch <= MAX_ITER:
                    for idx in range(10):
                        # Train
                        learn_rate = self.sess.run(
                            self.lr_lab, feed_dict={self.ph['epoch']: epoch})
                        self.train_lab(learn_rate)

                    qBL = self.generate_code(self.query_L, self.bit, "label")
                    rBL = self.generate_code(self.retrieval_L, self.bit,
                                             "label")

                    mapl2l = calc_map(qBL, rBL, self.query_L, self.retrieval_L)
                    print '=================================================='
                    print '...test map: map(l->l): {0}'.format(mapl2l)
                    print '=================================================='

                    for idx in range(5):
                        # Train
                        learn_rate = self.sess.run(
                            self.lr_txt, feed_dict={self.ph['epoch']: epoch})
                        self.train_txt(
                            learn_rate,
                            update='label')  # original effective loss
                        # self.train_txt(learn_rate, update='self')
                        # self.train_txt(learn_rate, update='g')

                    qBY = self.generate_code(self.query_Y, self.bit, "text")
                    rBL = self.generate_code(self.retrieval_L, self.bit,
                                             "label")
                    qBL = self.generate_code(self.query_L, self.bit, "label")
                    rBY = self.generate_code(self.retrieval_Y, self.bit,
                                             "text")

                    mapy2l = calc_map(qBY, rBL, self.query_L, self.retrieval_L)
                    mapl2y = calc_map(qBL, rBY, self.query_L, self.retrieval_L)
                    print '=================================================='
                    print '...test map: map(y->l): {0}'.format(mapy2l)
                    print '...test map: map(l->y): {0}'.format(mapl2y)
                    print '=================================================='

                    for idx in range(5):
                        # Train
                        learn_rate = self.sess.run(
                            self.lr_img, feed_dict={self.ph['epoch']: epoch})
                        self.train_img(
                            learn_rate,
                            update='label')  # original effective loss
                        # self.train_img(learn_rate, update='self')
                        # self.train_img(learn_rate, update='g')

                    qBX = self.generate_code(self.query_X, self.bit, "image")
                    rBL = self.generate_code(self.retrieval_L, self.bit,
                                             "label")
                    qBL = self.generate_code(self.query_L, self.bit, "label")
                    rBX = self.generate_code(self.retrieval_X, self.bit,
                                             "image")

                    mapx2l = calc_map(qBX, rBL, self.query_L, self.retrieval_L)
                    mapl2x = calc_map(qBL, rBX, self.query_L, self.retrieval_L)
                    print '=================================================='
                    print '...test map: map(x->l): {0}'.format(mapx2l)
                    print '...test map: map(l->x): {0}'.format(mapl2x)
                    print '=================================================='

                    for idx in range(5):
                        # Train
                        learn_rate = self.sess.run(
                            self.lr_gph, feed_dict={self.ph['epoch']: epoch})
                        self.train_whole(learn_rate)

                    for idx in range(5):
                        # Train
                        learn_rate = self.sess.run(
                            self.lr_txt, feed_dict={self.ph['epoch']: epoch})
                        self.train_txt(learn_rate, update='g')

                    for idx in range(5):
                        # Train
                        learn_rate = self.sess.run(
                            self.lr_img, feed_dict={self.ph['epoch']: epoch})
                        self.train_img(learn_rate, update='g')

                    print "********test************"
                    self.test(self.phase)
Exemplo n.º 5
0
def test_validation(B, query_L, train_L, qBX, qBY):
    mapi2t = calc_map(qBX, B, query_L, train_L)
    mapt2i = calc_map(qBY, B, query_L, train_L)
    return mapi2t, mapt2i
Exemplo n.º 6
0
            # update B
            var['B'] = np.sign(gamma * (var['F'] + var['G']))

            # calculate loss
            loss_ = calc_loss(var['B'], var['F'], var['G'], Sim, gamma, eta)
            print '...epoch: %3d, loss: %3.3f, comment: update B' % (epoch + 1,
                                                                     loss_)

            result['loss'].append(loss_)
        print '...training procedure finish'
        qBX = generate_image_code(image_input, cur_f_batch, query_x, bit,
                                  _meanpix)
        qBY = generate_text_code(text_input, cur_g_batch, query_y, bit)
        rBX = generate_image_code(image_input, cur_f_batch, retrieval_x, bit,
                                  _meanpix)
        rBY = generate_text_code(text_input, cur_g_batch, retrieval_y, bit)

        mapi2t = calc_map(qBX, rBY, query_L, retrieval_L)
        mapt2i = calc_map(qBY, rBX, query_L, retrieval_L)
        print '...test map: map(i->t): %3.3f, map(t->i): %3.3f' % (mapi2t,
                                                                   mapt2i)

        result['mapi2t'] = mapi2t
        result['mapt2i'] = mapt2i
        result['lr'] = lr

        fp = open(filename, 'wb')
        pickle.dump(result, fp)

        fp.close()
Exemplo n.º 7
0
def main():
    gpuconfig = tf.ConfigProto(gpu_options=tf.GPUOptions(
        per_process_gpu_memory_fraction=per_process_gpu_memory_fraction))
    os.environ["CUDA_VISIBLE_DEVICES"] = GPU_ID

    with tf.Graph().as_default(), tf.Session(config=gpuconfig) as sess:
        # config = tf.ConfigProto(allow_soft_placement=True)
        # config.gpu_options.allow_growth = True
        # sess = tf.Session(config=config)

        # construct image network
        image_input = tf.placeholder(tf.float32, [None, IMAGE_DIM])
        net = img_net_strucuture(image_input, IMAGE_DIM, HIDDEN_DIM,
                                 output_dim)
        cur_f_batch = tf.transpose(net['fc8'])  # (output_dim,2000)

        # construct text network
        text_input = tf.placeholder(tf.float32, (None, ) + (1, TEXT_DIM, 1))
        #   [None,TEXT_DIM]
        cur_g_batch = txt_net_strucuture(text_input, TEXT_DIM, output_dim)
        cur_g_batch = tf.transpose(cur_g_batch)  # (output_dim,2000)

        # training DCMH algorithm
        train_L = all_label[train_list]  # label (1500,10)
        train_x = img_fea[all_train_list]  # img (2000,4096)
        train_y = txt_fea[all_train_list]  # txt (2000,100)

        query_L = all_label[test_list]
        query_x = img_fea[test_list]
        query_y = txt_fea[test_list]

        retrieval_L = all_label[all_train_list]  # (2000,10)
        retrieval_x = img_fea[all_train_list]  #(2000,4096)
        retrieval_y = txt_fea[all_train_list]  #(2000,100)

        # train+semi 的标签信息 train_L (2000,10)
        train_L = np.concatenate((train_L, pred_label), axis=0)

        # 构建相似性矩阵 (2000,2000) 和总的训练样本数量一致
        Sim = calc_neighbor(train_L, train_L)

        var = {}
        lr = np.linspace(np.power(10, -1.5), np.power(10, -6.), MAX_ITER)
        var['lr'] = lr
        var['batch_size'] = batch_size
        var['F'] = np.random.randn(output_dim, num_train + num_semi)
        var['G'] = np.random.randn(output_dim, num_train + num_semi)
        var['B'] = np.sign(var['F'] + var['G'])
        var['unupdated_size'] = unupdated_size

        ph = {}
        ph['lr'] = tf.placeholder('float32', (), name='lr')
        ph['S_x'] = tf.placeholder('float32',
                                   [batch_size * 2, num_train + num_semi],
                                   name='pS_x')
        ph['S_y'] = tf.placeholder('float32',
                                   [num_train + num_semi, batch_size * 2],
                                   name='pS_y')
        ph['F'] = tf.placeholder('float32', [output_dim, num_train + num_semi],
                                 name='pF')
        ph['G'] = tf.placeholder('float32', [output_dim, num_train + num_semi],
                                 name='pG')
        ph['F_'] = tf.placeholder('float32', [output_dim, unupdated_size],
                                  name='unupdated_F')
        ph['G_'] = tf.placeholder('float32', [output_dim, unupdated_size],
                                  name='unupdated_G')
        ph['b_batch'] = tf.placeholder('float32', [output_dim, batch_size * 2],
                                       name='b_batch')
        ph['ones_'] = tf.constant(np.ones([unupdated_size, 1], 'float32'))
        ph['ones_batch'] = tf.constant(np.ones([batch_size * 2, 1], 'float32'))

        # comprehensive distance-preserving
        ph['Im'] = tf.placeholder('float32', [batch_size, output_dim],
                                  name='Image')  # batch_size的前一半,图像维度
        ph['Im_n'] = tf.placeholder('float32', [batch_size, output_dim],
                                    name='Image_n')  # batch_size的前一半,图像维度的一半
        ph['Im1'] = tf.placeholder('float32', [batch_size, output_dim],
                                   name='Image1')  # batch_size的后一半,图像维度
        ph['Im1_n'] = tf.placeholder('float32', [batch_size, output_dim],
                                     name='Image1_n')  # batch_size的后一半,图像维度的一半

        ph['Tx'] = tf.placeholder('float32', [batch_size, output_dim],
                                  name='Text')
        ph['Tx_n'] = tf.placeholder('float32', [batch_size, output_dim],
                                    name='Text_n')  # batch_size的前一半,文本维度的一半
        ph['Tx1'] = tf.placeholder('float32', [batch_size, output_dim],
                                   name='Text1')
        ph['Tx1_n'] = tf.placeholder('float32', [batch_size, output_dim],
                                     name='Text1_n')  # batch_size的后一半,文本维度的一半

        theta_x = 1.0 / 2 * tf.matmul(
            tf.transpose(cur_f_batch),
            ph['G'])  # (2000,64) (64,2000) => (2000,2000)
        theta_y = 1.0 / 2 * tf.matmul(tf.transpose(ph['F']), cur_g_batch)

        # DCMH image loss
        logloss_x = -tf.reduce_sum(
            tf.multiply(ph['S_x'], theta_x) -
            (tf.log(1.0 + tf.exp(-tf.abs(theta_x))) +
             tf.maximum(0.0, theta_x)))
        quantization_x = tf.reduce_sum(tf.pow((ph['b_batch'] - cur_f_batch),
                                              2))
        balance_x = tf.reduce_sum(
            tf.pow(
                tf.matmul(cur_f_batch, ph['ones_batch']) +
                tf.matmul(ph['F_'], ph['ones_']), 2))
        loss1_x = tf.div(logloss_x + gamma * quantization_x + eta * balance_x,
                         float((num_train + num_semi) * batch_size))
        # CDPAE image loss
        D_x = tf.reshape(
            tf.sqrt(
                tf.multiply(cos_dis(ph['Im'], ph['Im1']),
                            cos_dis(ph['Tx'], ph['Tx1'])) + 0.00001),
            [batch_size, 1])
        loss2_x = cos_loss(ph['Im_n'], ph['Tx_n']) + cos_loss(
            ph['Im1_n'], ph['Tx1_n'])  # L_pair
        I1_x = tf.reshape(cos_dis(ph['Im_n'], ph['Im1_n']), [batch_size, 1])
        T1_x = tf.reshape(cos_dis(ph['Tx_n'], ph['Tx1_n']), [batch_size, 1])
        I2_x = tf.reshape(cos_dis(ph['Im_n'], ph['Tx1_n']), [batch_size, 1])
        T2_x = tf.reshape(cos_dis(ph['Tx_n'], ph['Im1_n']), [batch_size, 1])
        lo2 = tf.abs(I2_x - D_x) + tf.abs(T2_x - D_x)
        lo3 = tf.abs(I1_x - D_x) + tf.abs(T1_x - D_x)
        loss3_x = tf.reduce_mean(lo2)  # L_heter
        loss4_x = tf.reduce_mean(lo3)  # L_homo
        loss_x = loss1_x + loss2_x + (loss3_x + loss4_x) * 0.3

        # DCMH text loss
        logloss_y = -tf.reduce_sum(
            tf.multiply(ph['S_y'], theta_y) -
            (tf.log(1.0 + tf.exp(-tf.abs(theta_y))) +
             tf.maximum(0.0, theta_y)))
        quantization_y = tf.reduce_sum(tf.pow((ph['b_batch'] - cur_g_batch),
                                              2))
        balance_y = tf.reduce_sum(
            tf.pow(
                tf.matmul(cur_g_batch, ph['ones_batch']) +
                tf.matmul(ph['G_'], ph['ones_']), 2))
        loss1_y = tf.div(logloss_y + gamma * quantization_y + eta * balance_y,
                         float((num_train + num_semi) * batch_size))
        # CDPAE text loss
        D_y = tf.reshape(
            tf.sqrt(
                tf.multiply(cos_dis(ph['Im'], ph['Im1']),
                            cos_dis(ph['Tx'], ph['Tx1'])) + 0.00001),
            [batch_size, 1])
        loss2_y = cos_loss(ph['Im_n'], ph['Tx_n']) + cos_loss(
            ph['Im1_n'], ph['Tx1_n'])  # L_pair
        I1_y = tf.reshape(cos_dis(ph['Im_n'], ph['Im1_n']), [batch_size, 1])
        T1_y = tf.reshape(cos_dis(ph['Tx_n'], ph['Tx1_n']), [batch_size, 1])
        I2_y = tf.reshape(cos_dis(ph['Im_n'], ph['Tx1_n']), [batch_size, 1])
        T2_y = tf.reshape(cos_dis(ph['Tx_n'], ph['Im1_n']), [batch_size, 1])
        lo2 = tf.abs(I2_y - D_y) + tf.abs(T2_y - D_y)
        lo3 = tf.abs(I1_y - D_y) + tf.abs(T1_y - D_y)
        loss3_y = tf.reduce_mean(lo2)  # L_heter
        loss4_y = tf.reduce_mean(lo3)  # L_homo
        loss_y = loss1_y + loss2_y + (loss3_y + loss4_y) * 0.3

        # 优化器
        optimizer = tf.train.GradientDescentOptimizer(ph['lr'])

        gradient_x = optimizer.compute_gradients(loss_x)
        gradient_y = optimizer.compute_gradients(loss_y)
        train_step_x = optimizer.apply_gradients(gradient_x)
        train_step_y = optimizer.apply_gradients(gradient_y)

        sess.run(tf.global_variables_initializer())

        loss_ = calc_loss(var['B'], var['F'], var['G'], Sim, gamma, eta)
        print('epoch: %3d, loss: %3.3f' % (0, loss_))

        result = {}
        result['loss'] = []
        result['imapi2t'] = []
        result['imapt2i'] = []

        print('...training procedure starts')

        for epoch in range(MAX_ITER):
            lr = var['lr'][epoch]
            # update F
            var['F'] = train_img_net(image_input, cur_f_batch, var, ph,
                                     train_x, train_L, lr, train_step_x, Sim)

            # update G
            var['G'] = train_txt_net(text_input, cur_g_batch, var, ph, train_y,
                                     train_L, lr, train_step_y, Sim)

            # update B
            var['B'] = np.sign(gamma * (var['F'] + var['G']))

            # calculate loss
            loss_ = calc_loss(var['B'], var['F'], var['G'], Sim, gamma, eta)

            print('...epoch: %3d, loss: %3.3f, comment: update B' %
                  (epoch + 1, loss_))
            result['loss'].append(loss_)

        print('...training procedure finish')

        # 测试集
        qBX = generate_image_code(image_input, cur_f_batch, query_x,
                                  output_dim)
        qBY = generate_text_code(text_input, cur_g_batch, query_y, output_dim)
        # 检索数据库
        rBX = generate_image_code(image_input, cur_f_batch, query_x,
                                  output_dim)
        rBY = generate_text_code(text_input, cur_g_batch, query_y, output_dim)

        # MAP PR
        mapi2t = calc_map(qBX, rBY, query_L, query_L, "i2t")
        mapt2i = calc_map(qBY, rBX, query_L, query_L, "t2i")

        print('test map: map(i->t): %3.3f, map(t->i): %3.3f' %
              (mapi2t, mapt2i))