Exemplo n.º 1
0
def save_and_plot(sequences, spectrograms,alignments, log_dir, step, loss, prefix):

    fn = partial(save_and_plot_fn,log_dir=log_dir, step=step, loss=loss, prefix=prefix)
    items = list(enumerate(zip(sequences, spectrograms, alignments)))

    parallel_run(fn, items, parallel=False)
    log('Test finished for step {}.'.format(step))
Exemplo n.º 2
0
def download_all(config):
    audio_dir = os.path.join(base_path, "audio")
    makedirs(audio_dir)

    soup = BeautifulSoup(requests.get(RSS_URL).text, "html5lib")

    items = [item for item in soup.find_all('item')]

    titles = [item.find('title').text[9:-3] for item in items]
    guids = [item.find('guid').text for item in items]

    accept_list = ['친절한 인나씨', '반납예정일', '귀욤열매 드세요']

    new_guids = [guid for title, guid in zip(titles, guids) \
            if any(accept in title for accept in accept_list) and '-' not in title]
    new_titles = [title for title, _ in zip(titles, guids) \
            if any(accept in title for accept in accept_list) and '-' not in title]

    for idx, title in enumerate(new_titles):
        print(" [{:3d}] {}, {}".format(
            idx + 1, title,
            os.path.basename(new_guids[idx]).split('_')[2]))
        if idx == config.max_num: print("=" * 30)

    urls = {
            os.path.basename(guid).split('_')[2]: guid \
                    for guid in new_guids[:config.max_num]
    }

    parallel_run(itunes_download,
                 urls.items(),
                 desc=" [*] Itunes download",
                 parallel=True)
def combine_wavs_batch(audio_paths, **kargv):
    audio_paths.sort()

    fn = partial(trim_on_silence, **kargv)

    parallel_run(fn, audio_paths, desc="Trimming on silence", parallel=False)

    return 0
Exemplo n.º 4
0
def split_on_silence_batch(audio_paths, method, **kargv):
    audio_paths.sort()
    method = method.lower()

    if method == "pydub":
        fn = partial(split_on_silence_with_pydub, **kargv)

    parallel_run(fn, audio_paths, desc="Split on silence", parallel=False)
Exemplo n.º 5
0
def combine_wavs_batch(audio_paths, method, **kargv):
    audio_paths.sort()
    method = method.lower()

    if method == "librosa":
        fn = partial(split_on_silence_with_librosa, **kargv)
    elif method == "pydub":
        fn = partial(split_on_silence_with_pydub, **kargv)

    parallel_run(fn, audio_paths,
            desc="Split on silence", parallel=False)

    audio_path = audio_paths[0]
    spl = os.path.basename(audio_path).split('.', 1)
    prefix = os.path.dirname(audio_path)+"/"+spl[0]+"."
    in_ext = audio_path.rsplit(".")[1]

    data = load_json(config.alignment_path, encoding="utf8")

    #print(data)

    for i in range(len(wavs)-1):
        if len(wavs[i]) > 15000:
             continue
        if not paths[i] in data:
             continue

        sum = len(wavs[i])
        filename = prefix + str(i).zfill(4)+"."
        asr = data[paths[i]]+" "
        concated = wavs[i]
        for j in range(i+1, len(wavs)):
             sum += len(wavs[j])
             sum += 400
             if sum > 15000:
                break
             if not paths[j] in data:
                break
             filename = filename + str(j).zfill(4) + "."
             asr = asr + data[paths[j]] + " "
             concated = concated + silence + wavs[j]
             final_fn = filename+"wav"
             data[final_fn] = asr
             concated.export(final_fn, format="wav")
             print(filename+"wav | "+str(len(concated)))

    if os.path.exists(config.alignment_path):
        backup_file(config.alignment_path)

    write_json(config.alignment_path, data)
    get_durations(data.keys(), print_detail=False)
    return 0
Exemplo n.º 6
0
def split_on_silence_batch(audio_paths, method, **kargv):
	audio_paths.sort()
	method = method.lower()
	deepspeech=kargv['deepspeech']
	min_segment_length=kargv['min_segment_length']
	if deepspeech:
		print('DeepSpeech compatibility enabled, using 16000Hz/16bit setting')
	
	if method == "librosa":
		fn = partial(split_on_silence_with_librosa, **kargv)
	elif method == "pydub":
		fn = partial(split_on_silence_with_pydub, **kargv)

	parallel_run(fn, audio_paths,
			desc="Split on silence", parallel=False)
def align_text_batch(config):
    if "jtbc" in config.recognition_path.lower():
        align_text = partial(align_text_for_jtbc,
                             score_threshold=config.score_threshold)
    else:
        raise Exception(" [!] find_related_texts for `{}` is not defined". \
                format(config.recognition_path))

    results = {}
    data = load_json(config.recognition_path)

    items = parallel_run(align_text,
                         data.items(),
                         desc="align_text_batch",
                         parallel=True)

    for item in items:
        results.update(item)

    found_count = sum([type(value) == str for value in results.values()])
    print(" [*] # found: {:.5f}% ({}/{})".format(
        len(results) / len(data), len(results), len(data)))
    print(" [*] # exact match: {:.5f}% ({}/{})".format(
        found_count / len(items), found_count, len(items)))

    return results
        def plot_and_save_parallel(wavs, alignments, use_manual_attention,
                                   mels):

            items = list(
                enumerate(zip(wavs, alignments, paths, texts, sequences,
                              mels)))

            fn = partial(plot_graph_and_save_audio,
                         base_path=base_path,
                         start_of_sentence=start_of_sentence,
                         end_of_sentence=end_of_sentence,
                         pre_word_num=pre_word_num,
                         post_word_num=post_word_num,
                         pre_surplus_idx=pre_surplus_idx,
                         post_surplus_idx=post_surplus_idx,
                         use_short_concat=use_short_concat,
                         use_manual_attention=use_manual_attention,
                         librosa_trim=librosa_trim,
                         attention_trim=attention_trim,
                         time_str=time_str,
                         isKorean=isKorean)
            return parallel_run(fn,
                                items,
                                desc="plot_graph_and_save_audio",
                                parallel=False)
Exemplo n.º 9
0
def get_text_from_audio_batch(paths, multi_process=False):
    results = {}
    items = parallel_run(get_text_from_audio,
                         paths,
                         desc="get_text_from_audio_batch")
    for item in items:
        results.update(item)
    return results
Exemplo n.º 10
0
def get_path_dict(data_dirs,
                  hparams,
                  config,
                  data_type,
                  n_test=None,
                  rng=np.random.RandomState(123)):
    # Load metadata:
    path_dict = {}
    for data_dir in data_dirs:  # ['datasets/moon\\data']
        paths = glob(
            "{}/*.npz".format(data_dir)
        )  # ['datasets/moon\\data\\001.0000.npz', 'datasets/moon\\data\\001.0001.npz', 'datasets/moon\\data\\001.0002.npz', ...]
        if data_type == 'train':
            rng.shuffle(
                paths
            )  # ['datasets/moon\\data\\012.0287.npz', 'datasets/moon\\data\\004.0215.npz', 'datasets/moon\\data\\003.0149.npz', ...]
        if not config.skip_path_filter:
            items = parallel_run(
                get_frame,
                paths,
                desc="filter_by_min_max_frame_batch",
                parallel=True
            )  # [('datasets/moon\\data\\012.0287.npz', 130, 21), ('datasets/moon\\data\\003.0149.npz', 209, 37), ...]

            min_n_frame = hparams['reduction_factor'] * hparams[
                'min_iters']  # 5*30
            max_n_frame = hparams['reduction_factor'] * hparams[
                'max_iters'] - 1  # 5*200 - 5
            # 다음 단계에서 data가 많이 떨어져 나감. 글자수가 짧은 것들이 탈락됨.
            new_items = [
                (path, n) for path, n, n_tokens in items
                if min_n_frame <= n <= max_n_frame
                and n_tokens >= hparams['min_tokens']
            ]  # [('datasets/moon\\data\\004.0383.npz', 297), ('datasets/moon\\data\\003.0533.npz', 394),...]
            new_paths = [path for path, n in new_items]
            new_n_frames = [n for path, n in new_items]

            hours = frames_to_hours(new_n_frames, hparams)

        else:
            new_paths = paths

        # train용 data와 test용 data로 나눈다.
        if data_type == 'train':
            new_paths = new_paths[:-n_test]  # 끝에 있는 n_test(batch_size)를 제외한 모두
        elif data_type == 'test':
            new_paths = new_paths[-n_test:]  # 끝에 있는 n_test
        else:
            raise Exception(" [!] Unkown data_type: {}".format(data_type))

        path_dict[
            data_dir] = new_paths  # ['datasets/moon\\data\\001.0621.npz', 'datasets/moon\\data\\003.0229.npz', ...]

        log(' [{}] Loaded metadata for {} examples ({:.2f} hours)'.format(
            data_dir, len(new_n_frames), hours))
        log(' [{}] Max length: {}'.format(data_dir, max(new_n_frames)))
        log(' [{}] Min length: {}'.format(data_dir, min(new_n_frames)))
    return path_dict
Exemplo n.º 11
0
def save_and_plot(sequences, spectrograms, alignments, log_dir, step, loss,
                  prefix):

    fn = partial(save_and_plot_fn,
                 log_dir=log_dir,
                 step=step,
                 loss=loss,
                 prefix=prefix)

    #print("seq.shape[",prefix,"]=",sequences.shape)
    #print("spec.shape[",prefix,"]=",spectrograms.shape)
    #print("spec.data[",prefix,"]=",spectrograms)
    #print("align.shape[",prefix,"]=",alignments.shape)
    #print("align.data[",prefix,"]=",alignments)

    items = list(enumerate(zip(sequences, spectrograms, alignments)))
    parallel_run(fn, items, parallel=False)
    log('Test finished for step {}.'.format(step))
Exemplo n.º 12
0
def combine_wavs_batch(audio_paths, method, **kargv):
    audio_paths.sort()
    method = method.lower()

    if method == "librosa":
        fn = partial(split_on_silence_with_librosa, **kargv)
    elif method == "pydub":
        fn = partial(split_on_silence_with_pydub, **kargv)

    parallel_run(fn, audio_paths, desc="Split on silence", parallel=False)

    audio_path = audio_paths[0]
    spl = os.path.basename(audio_path).split('.', 1)
    prefix = os.path.dirname(audio_path) + "/" + spl[0] + "."
    in_ext = audio_path.rsplit(".")[1]

    for i in range(len(wavs) - 1):
        if len(wavs[i]) > 15000:
            continue
        if not paths[i] in data:
            continue

        sum = len(wavs[i])
        filename = prefix + str(i).zfill(4) + "."
        asr = data[paths[i]] + " "
        concated = wavs[i]
        for j in range(i + 1, len(wavs)):
            sum += len(wavs[j])
            #sum += 200
            if sum > 15000:
                break
            if not paths[j] in data:
                break
            filename = filename + str(j).zfill(4) + "."
            asr = asr + data[paths[j]] + " "
            concated = concated + wavs[j]
            #if sum < 2000:
            #   continue
            final_fn = filename + "wav"
            data[final_fn] = asr
            concated.export(final_fn, format="wav")
            print(filename + "wav | " + str(len(concated)))

    return 0
def get_path_dict(data_dirs,
                  hparams,
                  config,
                  data_type,
                  n_test=None,
                  rng=np.random.RandomState(123)):

    # Load metadata:
    path_dict = {}
    for data_dir in data_dirs:
        paths = glob("{}/*.npz".format(data_dir))

        if data_type == 'train':
            rng.shuffle(paths)

        if not config.skip_path_filter:
            items = parallel_run(get_frame,
                                 paths,
                                 desc="filter_by_min_max_frame_batch",
                                 parallel=True)

            min_n_frame = hparams.reduction_factor * hparams.min_iters
            max_n_frame = hparams.reduction_factor * hparams.max_iters - hparams.reduction_factor

            new_items = [(path, n) for path, n, n_tokens in items \
                    if min_n_frame <= n <= max_n_frame and n_tokens >= hparams.min_tokens]

            if any(check in data_dir for check in ["son", "yuinna"]):
                blacklists = [".0000.", ".0001.", "NB11479580.0001"]
                new_items = [item for item in new_items \
                        if any(check not in item[0] for check in blacklists)]

            new_paths = [path for path, n in new_items]
            new_n_frames = [n for path, n in new_items]

            hours = frames_to_hours(new_n_frames)

            log(' [{}] Loaded metadata for {} examples ({:.2f} hours)'. \
                    format(data_dir, len(new_n_frames), hours))
            log(' [{}] Max length: {}'.format(data_dir,
                                              max(new_n_frames, default=0)))
            log(' [{}] Min length: {}'.format(data_dir,
                                              min(new_n_frames, default=0)))
        else:
            new_paths = paths

        if data_type == 'train':
            new_paths = new_paths[:-n_test]
        elif data_type == 'test':
            new_paths = new_paths[-n_test:]
        else:
            raise Exception(" [!] Unkown data_type: {}".format(data_type))

        path_dict[data_dir] = new_paths

    return path_dict
Exemplo n.º 14
0
def text_recognition_batch(paths, args, ds):
    paths.sort()
    results = {}
    items = parallel_run(partial(text_recognition, args=args, ds=ds),
                         paths,
                         desc="text_recognition_batch_deepspeech",
                         parallel=False)
    for item in items:
        results.update(item)
    return results
def text_recognition_batch(paths, config):
    paths.sort()

    results = {}
    items = parallel_run(
            partial(text_recognition, config=config), paths,
            desc="text_recognition_batch", parallel=True)
    for item in items:
        results.update(item)
    return results
Exemplo n.º 16
0
def save_ttest_result_for_blender(events_id, cm_big='YlOrRd', cm_small='PuBu', threshold=2, norm_by_percentile=True,
        norm_percs=(1,99), inverse_method='dSPM', do_print=False, n_jobs=1):
    for cond_id, cond_name in enumerate(events_id.keys()):
        for patient in get_patients():
            results_file_name = op.join(LOCAL_ROOT_DIR, 'results_for_blender', '{}_{}_{}'.format(patient, cond_name, inverse_method))
            if op.isfile('{}-stc.h5'.format(results_file_name)):
                print('{}, {}'.format(patient, cond_name))
                stc = mne.read_source_estimate(results_file_name)
                data_max, data_min = utils.get_activity_max_min(stc, norm_by_percentile, norm_percs, threshold)
                print(data_max, data_min)
                scalar_map_big = utils.get_scalar_map(threshold, data_max, cm_big)
                scalar_map_small = utils.get_scalar_map(data_min, -threshold, cm_small)
                for hemi in ['rh', 'lh']:
                    utils.check_stc_vertices(stc, hemi, op.join(BLENDER_DIR, 'fsaverage', '{}.pial.ply'.format(hemi)))
                    data = utils.stc_hemi_data(stc, hemi)
                    fol = '{}'.format(os.path.join(BLENDER_DIR, 'fsaverage', '{}_{}'.format(patient, cond_name), 'activity_map_{}').format(hemi))
                    utils.delete_folder_files(fol)
                    params = [(data[:, t], t, fol, scalar_map_big, scalar_map_small, threshold, do_print) for t in xrange(data.shape[1])]
                    utils.parallel_run(pool, _calc_activity_colors, params, n_jobs)
            else:
                print('no results for {} {}'.format(patient, cond_name))
Exemplo n.º 17
0
def morph_stcs_to_fsaverage(events_id, stc_per_epoch=False, inverse_method='dSPM', subjects_dir='', n_jobs=1):
    if subjects_dir is '':
        subjects_dir = os.environ['SUBJECTS_DIR']
    for subject in get_subjects():
        for cond_name in events_id.keys():
            print('morphing {}, {}'.format(subject, cond_name))
            if not stc_per_epoch:
                morphed_stc_file_name = op.join(LOCAL_ROOT_DIR, 'stc_morphed', '{}_{}_morphed_{}'.format(subject, cond_name, inverse_method))
                if op.isfile('{}-stc.h5'.format(morphed_stc_file_name)):
                    print('{} {} already morphed'.format(subject, cond_name))
                else:
                    local_stc_file_name = op.join(LOCAL_ROOT_DIR, 'stc', '{}_{}_{}'.format(subject, cond_name, inverse_method))
                    if op.isfile('{}-stc.h5'.format(local_stc_file_name)):
                        stc = mne.read_source_estimate(local_stc_file_name)
                        stc_morphed = mne.morph_data(subject, 'fsaverage', stc, grade=5, smooth=20,
                            subjects_dir=subjects_dir)
                        stc_morphed.save(morphed_stc_file_name, ftype='h5')
                    else:
                        print("can't find stc file for {}, {}".format(subject, cond_name))
            else:
                stcs = glob.glob(op.join(LOCAL_ROOT_DIR, 'stc_epochs', '{}_{}_*_{}-stc.h5'.format(subject, cond_name, inverse_method)))
                params = [(subject, cond_name, stc_file_name, inverse_method, subjects_dir) for stc_file_name in stcs]
                utils.parallel_run(pool, _morphed_epochs_files, params, n_jobs)
Exemplo n.º 18
0
    def _run_backtests(self, debug):
        self.backtests = []
        self.baselines = []
        param_list = []

        for strategy, resample_period, ticker in \
                itertools.product(self.strategy_set, self.resample_periods, self.tickers):

            params = {}
            params['strategy'] = strategy
            params['start_time'] = self.start_time
            params['end_time'] = self.end_time
            params['transaction_currency'] = ticker.transaction_currency
            params['counter_currency'] = ticker.counter_currency
            params['resample_period'] = resample_period
            params['start_cash'] = self.start_cash
            params['start_crypto'] = self.start_crypto
            params[
                'evaluate_profit_on_last_order'] = self.evaluate_profit_on_last_order
            params['verbose'] = False
            params['source'] = ticker.source
            params['order_generator'] = self.order_generator

            param_list.append(params)

        if self._parallelize:
            # from pathos.multiprocessing import ProcessingPool as Pool
            # with Pool(POOL_SIZE) as pool:
            #    backtests = pool.map(self._evaluate, param_list)
            #    pool.close()
            #    pool.join()
            backtests = parallel_run(self._evaluate, param_list)
            logging.info("Parallel processing finished.")
        else:
            backtests = map(self._evaluate, param_list)

        for backtest in backtests:
            if backtest is None:
                continue
            if backtest.profit_percent is None or backtest.benchmark_backtest.profit_percent is None:
                continue
            self.backtests.append(backtest)
            self.baselines.append(backtest.benchmark_backtest)
            if debug:
                break

        logging.info("Finished backtesting, building report...")
Exemplo n.º 19
0
def get_path_dict(data_dirs, hparams, config,data_type, n_test=None,rng=np.random.RandomState(123)):

    # Load metadata:
    path_dict = {}
    for data_dir in data_dirs:  # ['datasets/moon\\data']
        paths = glob("{}/*.npz".format(data_dir)) # ['datasets/moon\\data\\001.0000.npz', 'datasets/moon\\data\\001.0001.npz', 'datasets/moon\\data\\001.0002.npz', ...]

        if data_type == 'train':
            rng.shuffle(paths)  # ['datasets/moon\\data\\012.0287.npz', 'datasets/moon\\data\\004.0215.npz', 'datasets/moon\\data\\003.0149.npz', ...]

        if not config.skip_path_filter:
            items = parallel_run( get_frame, paths, desc="filter_by_min_max_frame_batch", parallel=True)  # [('datasets/moon\\data\\012.0287.npz', 130, 21), ('datasets/moon\\data\\003.0149.npz', 209, 37), ...]

            min_n_frame = hparams.reduction_factor * hparams.min_iters   # 5*30
            max_n_frame = hparams.reduction_factor * hparams.max_iters - hparams.reduction_factor  # 5*200 - 5
            
            # 다음 단계에서 data가 많이 떨어져 나감. 글자수가 짧은 것들이 탈락됨.
            new_items = [(path, n) for path, n, n_tokens in items if min_n_frame <= n <= max_n_frame and n_tokens >= hparams.min_tokens] # [('datasets/moon\\data\\004.0383.npz', 297), ('datasets/moon\\data\\003.0533.npz', 394),...]

            if any(check in data_dir for check in ["son", "yuinna"]):
                blacklists = [".0000.", ".0001.", "NB11479580.0001"]
                new_items = [item for item in new_items if any(check not in item[0] for check in blacklists)]

            new_paths = [path for path, n in new_items]
            new_n_frames = [n for path, n in new_items]

            hours = frames_to_hours(new_n_frames,hparams)

            log(' [{}] Loaded metadata for {} examples ({:.2f} hours)'.format(data_dir, len(new_n_frames), hours))
            log(' [{}] Max length: {}'.format(data_dir, max(new_n_frames)))
            log(' [{}] Min length: {}'.format(data_dir, min(new_n_frames)))
        else:
            new_paths = paths

        if data_type == 'train':
            new_paths = new_paths[:-n_test]
        elif data_type == 'test':
            new_paths = new_paths[-n_test:]
        else:
            raise Exception(" [!] Unkown data_type: {}".format(data_type))

        path_dict[data_dir] = new_paths  # ['datasets/moon\\data\\001.0621.npz', 'datasets/moon\\data\\003.0229.npz', ...]

    return path_dict
Exemplo n.º 20
0
def align_text_batch(config):
    align_text = partial(align_text_fn,
            score_threshold=config.score_threshold)

    results = {}
    data = load_json(config.recognition_path, encoding=config.recognition_encoding)

    items = parallel_run(
            align_text, data.items(),
            desc="align_text_batch", parallel=True)

    for item in items:
        results.update(item)

    found_count = sum([type(value) == str for value in results.values()])
    print(" [*] # found: {:.5f}% ({}/{})".format(
            len(results)/len(data), len(results), len(data)))
    print(" [*] # exact match: {:.5f}% ({}/{})".format(
            found_count/len(items), found_count, len(items)))

    return results
Exemplo n.º 21
0
    def run_parallel_experiments(self,
                                 num_processes=8,
                                 rerun_existing=False,
                                 display_results=True):
        #from pathos.multiprocessing import ProcessingPool as Pool

        partial_run_func = partial(ExperimentManager.run_variant,
                                   keep_record=True,
                                   display_results=display_results,
                                   rerun_existing=rerun_existing,
                                   saved_figure_ext='.fig.png')

        records = parallel_run(partial_run_func, self.variants)
        #with Pool(num_processes) as pool:
        #    records = pool.map(partial_run_func, self.variants)
        #    pool.close()
        #    pool.join()
        #    pool.terminate()

        for record in records:
            if record is not None:  # empty records if experiments already exist
                self._save_rockstars(record)
Exemplo n.º 22
0
def calc_all(events_id, tmin=None, tmax=None, overwrite=False,inverse_method='dSPM',
        baseline=(None, 0), apply_for_epochs=False, apply_SSP_projection_vectors=True, add_eeg_ref=True, n_jobs=1):
    params = [(subject, events_id, tmin, tmax, overwrite, inverse_method, baseline, apply_for_epochs,
               apply_SSP_projection_vectors, add_eeg_ref) for subject in get_subjects()]
    utils.parallel_run(pool, _calc_all, params, n_jobs)
Exemplo n.º 23
0
def _calc_evoked(events_id, epochs):
    params = [(subject, events_id, epochs) for subject in get_subjects()]
    utils.parallel_run(pool, _calc_inverse, params, n_jobs)
Exemplo n.º 24
0
def calc_inverse(epochs=None, overwrite=False):
    params = [(subject, epochs, overwrite) for subject in get_subjects()]
    utils.parallel_run(pool, _calc_inverse, params, n_jobs)
Exemplo n.º 25
0
def calc_epoches(events_id, tmin, tmax, n_jobs=1):
    params = [(subject, events_id, tmin, tmax) for subject in get_subjects()]
    utils.parallel_run(pool, _calc_epoches, params, n_jobs)
Exemplo n.º 26
0
    base_dir = os.path.dirname(os.path.realpath(__file__))
    news_id_path = os.path.join(base_dir, "news_ids.json")

    if not os.path.exists(news_id_path):
        while True:
            tmp_ids = get_news_ids(page_idx)
            if len(tmp_ids) == 0:
                break

            news_ids.extend(tmp_ids)
            print(" [*] Download page {}: {}/{}".format(
                page_idx, len(tmp_ids), len(news_ids)))

            page_idx += 1

        with open(news_id_path, "w") as f:
            json.dump(news_ids, f, indent=2, ensure_ascii=False)
    else:
        with open(news_id_path) as f:
            news_ids = json.loads(f.read())

    exceptions = ["NB10830162"]
    news_ids = list(set(news_ids) - set(exceptions))

    fn = partial(download_news_video_and_content, base_dir=base_dir)

    results = parallel_run(fn,
                           news_ids,
                           desc="Download news video+text",
                           parallel=True)
Exemplo n.º 27
0
def create_stcs(events_id, epochs=None, evoked=None, inv=None, inverse_method='dSPM',
        baseline=(None, 0), apply_for_epochs=False, apply_SSP_projection_vectors=True, add_eeg_ref=True):
    params = [(subject, events_id, epochs, evoked, inv, inverse_method,
        baseline, apply_for_epochs, apply_SSP_projection_vectors, add_eeg_ref) for subject in get_subjects()]
    utils.parallel_run(pool, _create_stcs, params, n_jobs)