Exemplo n.º 1
0
def LDL(param, X, pm, Nstep, baryon=True):

    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    X = Displacement(param, X, pm, Nstep)

    #paint particle overdensity field
    layout = fastpm.decompose(X, pm)
    Xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(Xl, 1., None, pm)

    if baryon:
        #take parameters
        mu = linalg.take(param, 5*Nstep, axis=0)
        b1 = linalg.take(param, 5*Nstep+1, axis=0)
        b0 = linalg.take(param, 5*Nstep+2, axis=0)
    
        mu = mpi.allbcast(mu, comm=pm.comm)
        mu = linalg.broadcast_to(mu, eval(delta, lambda x : x.shape))
        b1 = mpi.allbcast(b1, comm=pm.comm)
        b1 = linalg.broadcast_to(b1, eval(delta, lambda x : x.shape))
        b0 = mpi.allbcast(b0, comm=pm.comm)
        b0 = linalg.broadcast_to(b0, eval(delta, lambda x : x.shape))
    
        #Field transformation
        F = ReLU(b1 * (delta+1e-8) ** mu + b0) #definition of b0 is different from the paper
    else:
        F = delta
    
    return F
Exemplo n.º 2
0
def LDL(param, X, pm, Nstep, baryon=True):

    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    X = Displacement(param, X, pm, Nstep)

    #paint particle overdensity field
    layout = fastpm.decompose(X, pm)
    Xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(Xl, 1., None, pm)

    if baryon:
        #take parameters
        gamma = linalg.take(param, 5*Nstep, axis=0)
        bias0 = linalg.take(param, 5*Nstep+1, axis=0)
        bias1 = linalg.take(param, 5*Nstep+2, axis=0)
    
        gamma = mpi.allbcast(gamma, comm=pm.comm)
        gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape))
        bias0 = mpi.allbcast(bias0, comm=pm.comm)
        bias0 = linalg.broadcast_to(bias0, eval(delta, lambda x : x.shape))
        bias1 = mpi.allbcast(bias1, comm=pm.comm)
        bias1 = linalg.broadcast_to(bias1, eval(delta, lambda x : x.shape))
    
        #Field transformation
        F = ReLU(bias0 * (delta+1e-8) ** gamma + bias1)
    else:
        F = delta
    
    return F
Exemplo n.º 3
0
 def test(x):
     size = stdlib.eval(x, lambda x: numpy.prod(x.shape))
     mean = linalg.sum(x, axis=None) / size
     mean = linalg.broadcast_to(mean, stdlib.eval(x, lambda x: x.shape))
     x = x - mean
     y = linalg.sum(x**2, axis=None) / size
     return y
Exemplo n.º 4
0
    def interp(self, dx, p, dx_PGD, ax, ap, ai, af):

        di, df = self.cosmo.comoving_distance(
            1. / numpy.array([ai, af], dtype=float) - 1.)

        zero_map = Literal(self.mappm.create('real', value=0.))
        kmaps = [zero_map for ii in range(len(self.ds))]

        for M in self.imgen.generate(di, df):
            # if lower end of box further away than source -> do nothing
            if df > self.max_ds:
                continue
            else:
                M, boxshift = M

                # positions of unevolved particles after rotation
                d_approx = self.rotate.build(M=M, boxshift=boxshift).compute(
                    'd', init=dict(x=self.q))
                z_approx = z_chi.apl.impl(node=None,
                                          cosmo=self.cosmo,
                                          z_chi_int=self.z_chi_int,
                                          chi=d_approx)['z']
                a_approx = 1. / (z_approx + 1.)

                # move particles to a_approx, then add PGD correction

                dx1 = dx + p * self.DriftFactor(a_approx, ax,
                                                ap)[:, None] + dx_PGD

                # rotate their positions
                xy, d = self.rotate((dx1 + self.q) % self.pm.BoxSize, M,
                                    boxshift)

                # projection
                xy = ((xy - self.pm.BoxSize[:2] * 0.5) /
                      linalg.broadcast_to(linalg.reshape(d, (len(self.q), 1)),
                                          (len(self.q), 2)) +
                      self.mappm.BoxSize * 0.5)

                for ii, ds in enumerate(self.ds):
                    w = self.wlen(d, ds)
                    mask = stdlib.eval(
                        d,
                        lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 *
                        (d_approx < di) * (d_approx >= df) * (d <= ds))
                    kmap_ = self.makemap(xy, w * mask) * self.factor
                    kmaps[ii] = kmaps[ii] + kmap_

        return kmaps
Exemplo n.º 5
0
    def model(self, x):
        di, df = self.cosmo.comoving_distance(1. /
                                              numpy.array([self.ai, self.af]) -
                                              1.)
        kmap = lightcone.list_elem(self.kmaps, 0)
        for M in self.sim.imgen.generate(di, df):
            #if lower end of box further away than source -> do nothing
            if df > self.sim.max_ds:
                continue
            else:
                M, boxshift = M

                #positions of unevolved particles after rotation
                d_approx = self.sim.rotate.build(
                    M=M, boxshift=boxshift).compute('d', init=dict(x=self.q))
                z_approx = lightcone.z_chi.apl.impl(
                    node=None,
                    cosmo=self.cosmo,
                    z_chi_int=self.sim.z_chi_int,
                    chi=d_approx)['z']
                a_approx = 1. / (z_approx + 1.)

                #move particles to a_approx, then add PGD correction

                dx1 = x + self.p * self.DriftFactor(
                    a_approx, self.ac, self.ac)[:, None] + self.dx_PGD
                #rotate their positions
                xy, d = self.sim.rotate((dx1 + self.q) % self.pm.BoxSize, M,
                                        boxshift)

                #projection
                xy = (xy - self.pm.BoxSize[:2] * 0.5) / linalg.broadcast_to(
                    linalg.reshape(d, (np.prod(self.pm.Nmesh), 1)),
                    (np.prod(self.pm.Nmesh), 2)) + self.sim.mappm.BoxSize * 0.5

                for ii, ds in enumerate(self.sim.ds):
                    w = self.sim.wlen(d, ds)
                    mask = stdlib.eval(
                        d,
                        lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 *
                        (d_approx < di) * (d_approx >= df) * (d <= ds))
                    #kmap     = lightcone.list_elem(self.kmaps,ii)
                    kmap_ = self.sim.makemap(xy, w * mask)
                    kmap = linalg.add(kmap_, kmap)
                    #self.kmaps = lightcone.list_put(self.kmaps,kmap,ii)
        #kmap_ = RealField(lightcone.list_elem(self.kmaps,0))
        return kmap
Exemplo n.º 6
0
    def no_interp(self, dx, p, dx_PGD, ai, af, jj):

        dx = dx + dx_PGD

        di, df = self.cosmo.comoving_distance(
            1. / numpy.array([ai, af], dtype=object) - 1.)

        zero_map = Literal(self.mappm.create('real', value=0.))
        kmaps = [zero_map for ii in range(len(self.ds))]

        for M in self.imgen.generate(di, df):
            # if lower end of box further away than source -> do nothing
            if df > self.max_ds:
                if self.params['logging']:
                    self.logger.info('imgen passed, %d' % jj)
                continue
            else:
                if self.params['logging']:
                    self.logger.info('imgen with projection, %d' % jj)
                M, boxshift = M
                xy, d = self.rotate((dx + self.q) % self.pm.BoxSize, M,
                                    boxshift)
                d_approx = self.rotate.build(M=M, boxshift=boxshift).compute(
                    'd', init=dict(x=self.q))

                xy = ((xy - self.pm.BoxSize[:2] * 0.5) /
                      linalg.broadcast_to(linalg.reshape(d, (len(self.q), 1)),
                                          (len(self.q), 2)) +
                      self.mappm.BoxSize * 0.5)

                for ii, ds in enumerate(self.ds):
                    if self.params['logging']:
                        self.logger.info('projection, %d' % jj)
                    w = self.wlen(d, ds)
                    mask = stdlib.eval(
                        d,
                        lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 *
                        (d_approx < di) * (d_approx >= df) * (d <= ds))
                    kmap_ = self.makemap(xy, w * mask) * self.factor
                    kmaps[ii] = kmaps[ii] + kmap_

        return kmaps
Exemplo n.º 7
0
    def no_interp(self, kmaps, q, ai, af, jj):

        di, df = self.cosmo.comoving_distance(
            1. / numpy.array([ai, af], dtype=object) - 1.)

        #q      = np.random.random(self.q.shape)*self.pm.BoxSize[0]

        for M in self.imgen.generate(di, df):
            # if lower end of box further away than source -> do nothing
            if df > self.max_ds:
                if self.params['logging']:
                    self.logger.info('imgen passed, %d' % jj)
                continue
            else:
                if self.params['logging']:
                    self.logger.info('imgen with projection, %d' % jj)
                M, boxshift = M
                xy, d = self.rotate(q, M, boxshift)
                d_approx = self.rotate.build(M=M, boxshift=boxshift).compute(
                    'd', init=dict(x=q))

                xy = ((xy - self.pm.BoxSize[:2] * 0.5) /
                      linalg.broadcast_to(linalg.reshape(d, (len(self.q), 1)),
                                          (len(self.q), 2)) +
                      self.mappm.BoxSize * 0.5)

                for ii, ds in enumerate(self.ds):
                    if self.params['logging']:
                        self.logger.info('projection, %d' % jj)
                    w = self.wlen(d, ds)
                    mask = stdlib.eval(
                        d,
                        lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 *
                        (d_approx < di) * (d_approx >= df) * (d <= ds))
                    kmap_ = self.makemap(xy, w * mask) * self.factor
                    kmap = list_elem(kmaps, ii)
                    kmap = linalg.add(kmap_, kmap)
                    kmaps = list_put(kmaps, kmap, ii)

        return kmaps
Exemplo n.º 8
0
def Displacement(param, X, pm, Nstep):

    #Lagrangian displacement

    #normalization constant for overdensity 
    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    for i in range(Nstep):

        #move the particles across different MPI ranks
        layout = fastpm.decompose(X, pm)
        xl = fastpm.exchange(X, layout)
        delta = fac * fastpm.paint(xl, 1.0, None, pm)

        #take parameters
        alpha = linalg.take(param, 5*i, axis=0)
        gamma = linalg.take(param, 5*i+1, axis=0)
        kh = linalg.take(param, 5*i+2, axis=0)
        kl = linalg.take(param, 5*i+3, axis=0)
        n = linalg.take(param, 5*i+4, axis=0)
        
        #delta**gamma
        gamma = mpi.allbcast(gamma, comm=pm.comm)
        gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape)) 
        delta = (delta+1e-8) ** gamma

        #Fourier transform
        deltak = fastpm.r2c(delta)

        #Green's operator in Fourier space
        Filter = Literal(pm.create(type='complex', value=1).apply(lambda k, v: k.normp(2, zeromode=1e-8) ** 0.5))
        kh = mpi.allbcast(kh, comm=pm.comm)
        kh = linalg.broadcast_to(kh, eval(Filter, lambda x : x.shape)) 
        kl = mpi.allbcast(kl, comm=pm.comm)
        kl = linalg.broadcast_to(kl, eval(Filter, lambda x : x.shape)) 
        n = mpi.allbcast(n, comm=pm.comm)
        n = linalg.broadcast_to(n, eval(Filter, lambda x : x.shape)) 
        
        Filter = - unary.exp(-Filter**2/kl**2) * unary.exp(-kh**2/Filter**2) * Filter**n
        Filter = compensate2factor(Filter) 

        p = complex_mul(deltak, Filter)

        #gradient of potential
        r1 = []
        for d in range(pm.ndim):
            dx1_c = fastpm.apply_transfer(p, fastpm.fourier_space_neg_gradient(d, pm, order=1))
            dx1_r = fastpm.c2r(dx1_c)
            dx1l = fastpm.readout(dx1_r, xl, None)
            dx1 = fastpm.gather(dx1l, layout)
            r1.append(dx1)

        #displacement
        S = linalg.stack(r1, axis=-1)
        alpha = mpi.allbcast(alpha, comm=pm.comm)
        alpha = linalg.broadcast_to(alpha, eval(S, lambda x : x.shape)) 
        S = S * alpha

        X = X+S
        
    return X
Exemplo n.º 9
0
 def model(self, x):
     return linalg.broadcast_to(x, self.shape)
Exemplo n.º 10
0
 def model(self, x):
     result = self.a * linalg.broadcast_to(linalg.reshape(x, (5, 1)),
                                           (5, 2))
     return result
Exemplo n.º 11
0
 def func(x, n):
     a = linalg.take(n, 0, axis=0)
     a = linalg.broadcast_to(a, eval(x, lambda x: x.shape))
     return x + a