def LDL(param, X, pm, Nstep, baryon=True): fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM) X = Displacement(param, X, pm, Nstep) #paint particle overdensity field layout = fastpm.decompose(X, pm) Xl = fastpm.exchange(X, layout) delta = fac * fastpm.paint(Xl, 1., None, pm) if baryon: #take parameters mu = linalg.take(param, 5*Nstep, axis=0) b1 = linalg.take(param, 5*Nstep+1, axis=0) b0 = linalg.take(param, 5*Nstep+2, axis=0) mu = mpi.allbcast(mu, comm=pm.comm) mu = linalg.broadcast_to(mu, eval(delta, lambda x : x.shape)) b1 = mpi.allbcast(b1, comm=pm.comm) b1 = linalg.broadcast_to(b1, eval(delta, lambda x : x.shape)) b0 = mpi.allbcast(b0, comm=pm.comm) b0 = linalg.broadcast_to(b0, eval(delta, lambda x : x.shape)) #Field transformation F = ReLU(b1 * (delta+1e-8) ** mu + b0) #definition of b0 is different from the paper else: F = delta return F
def LDL(param, X, pm, Nstep, baryon=True): fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM) X = Displacement(param, X, pm, Nstep) #paint particle overdensity field layout = fastpm.decompose(X, pm) Xl = fastpm.exchange(X, layout) delta = fac * fastpm.paint(Xl, 1., None, pm) if baryon: #take parameters gamma = linalg.take(param, 5*Nstep, axis=0) bias0 = linalg.take(param, 5*Nstep+1, axis=0) bias1 = linalg.take(param, 5*Nstep+2, axis=0) gamma = mpi.allbcast(gamma, comm=pm.comm) gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape)) bias0 = mpi.allbcast(bias0, comm=pm.comm) bias0 = linalg.broadcast_to(bias0, eval(delta, lambda x : x.shape)) bias1 = mpi.allbcast(bias1, comm=pm.comm) bias1 = linalg.broadcast_to(bias1, eval(delta, lambda x : x.shape)) #Field transformation F = ReLU(bias0 * (delta+1e-8) ** gamma + bias1) else: F = delta return F
def test(x): size = stdlib.eval(x, lambda x: numpy.prod(x.shape)) mean = linalg.sum(x, axis=None) / size mean = linalg.broadcast_to(mean, stdlib.eval(x, lambda x: x.shape)) x = x - mean y = linalg.sum(x**2, axis=None) / size return y
def interp(self, dx, p, dx_PGD, ax, ap, ai, af): di, df = self.cosmo.comoving_distance( 1. / numpy.array([ai, af], dtype=float) - 1.) zero_map = Literal(self.mappm.create('real', value=0.)) kmaps = [zero_map for ii in range(len(self.ds))] for M in self.imgen.generate(di, df): # if lower end of box further away than source -> do nothing if df > self.max_ds: continue else: M, boxshift = M # positions of unevolved particles after rotation d_approx = self.rotate.build(M=M, boxshift=boxshift).compute( 'd', init=dict(x=self.q)) z_approx = z_chi.apl.impl(node=None, cosmo=self.cosmo, z_chi_int=self.z_chi_int, chi=d_approx)['z'] a_approx = 1. / (z_approx + 1.) # move particles to a_approx, then add PGD correction dx1 = dx + p * self.DriftFactor(a_approx, ax, ap)[:, None] + dx_PGD # rotate their positions xy, d = self.rotate((dx1 + self.q) % self.pm.BoxSize, M, boxshift) # projection xy = ((xy - self.pm.BoxSize[:2] * 0.5) / linalg.broadcast_to(linalg.reshape(d, (len(self.q), 1)), (len(self.q), 2)) + self.mappm.BoxSize * 0.5) for ii, ds in enumerate(self.ds): w = self.wlen(d, ds) mask = stdlib.eval( d, lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 * (d_approx < di) * (d_approx >= df) * (d <= ds)) kmap_ = self.makemap(xy, w * mask) * self.factor kmaps[ii] = kmaps[ii] + kmap_ return kmaps
def model(self, x): di, df = self.cosmo.comoving_distance(1. / numpy.array([self.ai, self.af]) - 1.) kmap = lightcone.list_elem(self.kmaps, 0) for M in self.sim.imgen.generate(di, df): #if lower end of box further away than source -> do nothing if df > self.sim.max_ds: continue else: M, boxshift = M #positions of unevolved particles after rotation d_approx = self.sim.rotate.build( M=M, boxshift=boxshift).compute('d', init=dict(x=self.q)) z_approx = lightcone.z_chi.apl.impl( node=None, cosmo=self.cosmo, z_chi_int=self.sim.z_chi_int, chi=d_approx)['z'] a_approx = 1. / (z_approx + 1.) #move particles to a_approx, then add PGD correction dx1 = x + self.p * self.DriftFactor( a_approx, self.ac, self.ac)[:, None] + self.dx_PGD #rotate their positions xy, d = self.sim.rotate((dx1 + self.q) % self.pm.BoxSize, M, boxshift) #projection xy = (xy - self.pm.BoxSize[:2] * 0.5) / linalg.broadcast_to( linalg.reshape(d, (np.prod(self.pm.Nmesh), 1)), (np.prod(self.pm.Nmesh), 2)) + self.sim.mappm.BoxSize * 0.5 for ii, ds in enumerate(self.sim.ds): w = self.sim.wlen(d, ds) mask = stdlib.eval( d, lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 * (d_approx < di) * (d_approx >= df) * (d <= ds)) #kmap = lightcone.list_elem(self.kmaps,ii) kmap_ = self.sim.makemap(xy, w * mask) kmap = linalg.add(kmap_, kmap) #self.kmaps = lightcone.list_put(self.kmaps,kmap,ii) #kmap_ = RealField(lightcone.list_elem(self.kmaps,0)) return kmap
def no_interp(self, dx, p, dx_PGD, ai, af, jj): dx = dx + dx_PGD di, df = self.cosmo.comoving_distance( 1. / numpy.array([ai, af], dtype=object) - 1.) zero_map = Literal(self.mappm.create('real', value=0.)) kmaps = [zero_map for ii in range(len(self.ds))] for M in self.imgen.generate(di, df): # if lower end of box further away than source -> do nothing if df > self.max_ds: if self.params['logging']: self.logger.info('imgen passed, %d' % jj) continue else: if self.params['logging']: self.logger.info('imgen with projection, %d' % jj) M, boxshift = M xy, d = self.rotate((dx + self.q) % self.pm.BoxSize, M, boxshift) d_approx = self.rotate.build(M=M, boxshift=boxshift).compute( 'd', init=dict(x=self.q)) xy = ((xy - self.pm.BoxSize[:2] * 0.5) / linalg.broadcast_to(linalg.reshape(d, (len(self.q), 1)), (len(self.q), 2)) + self.mappm.BoxSize * 0.5) for ii, ds in enumerate(self.ds): if self.params['logging']: self.logger.info('projection, %d' % jj) w = self.wlen(d, ds) mask = stdlib.eval( d, lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 * (d_approx < di) * (d_approx >= df) * (d <= ds)) kmap_ = self.makemap(xy, w * mask) * self.factor kmaps[ii] = kmaps[ii] + kmap_ return kmaps
def no_interp(self, kmaps, q, ai, af, jj): di, df = self.cosmo.comoving_distance( 1. / numpy.array([ai, af], dtype=object) - 1.) #q = np.random.random(self.q.shape)*self.pm.BoxSize[0] for M in self.imgen.generate(di, df): # if lower end of box further away than source -> do nothing if df > self.max_ds: if self.params['logging']: self.logger.info('imgen passed, %d' % jj) continue else: if self.params['logging']: self.logger.info('imgen with projection, %d' % jj) M, boxshift = M xy, d = self.rotate(q, M, boxshift) d_approx = self.rotate.build(M=M, boxshift=boxshift).compute( 'd', init=dict(x=q)) xy = ((xy - self.pm.BoxSize[:2] * 0.5) / linalg.broadcast_to(linalg.reshape(d, (len(self.q), 1)), (len(self.q), 2)) + self.mappm.BoxSize * 0.5) for ii, ds in enumerate(self.ds): if self.params['logging']: self.logger.info('projection, %d' % jj) w = self.wlen(d, ds) mask = stdlib.eval( d, lambda d, di=di, df=df, ds=ds, d_approx=d_approx: 1.0 * (d_approx < di) * (d_approx >= df) * (d <= ds)) kmap_ = self.makemap(xy, w * mask) * self.factor kmap = list_elem(kmaps, ii) kmap = linalg.add(kmap_, kmap) kmaps = list_put(kmaps, kmap, ii) return kmaps
def Displacement(param, X, pm, Nstep): #Lagrangian displacement #normalization constant for overdensity fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM) for i in range(Nstep): #move the particles across different MPI ranks layout = fastpm.decompose(X, pm) xl = fastpm.exchange(X, layout) delta = fac * fastpm.paint(xl, 1.0, None, pm) #take parameters alpha = linalg.take(param, 5*i, axis=0) gamma = linalg.take(param, 5*i+1, axis=0) kh = linalg.take(param, 5*i+2, axis=0) kl = linalg.take(param, 5*i+3, axis=0) n = linalg.take(param, 5*i+4, axis=0) #delta**gamma gamma = mpi.allbcast(gamma, comm=pm.comm) gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape)) delta = (delta+1e-8) ** gamma #Fourier transform deltak = fastpm.r2c(delta) #Green's operator in Fourier space Filter = Literal(pm.create(type='complex', value=1).apply(lambda k, v: k.normp(2, zeromode=1e-8) ** 0.5)) kh = mpi.allbcast(kh, comm=pm.comm) kh = linalg.broadcast_to(kh, eval(Filter, lambda x : x.shape)) kl = mpi.allbcast(kl, comm=pm.comm) kl = linalg.broadcast_to(kl, eval(Filter, lambda x : x.shape)) n = mpi.allbcast(n, comm=pm.comm) n = linalg.broadcast_to(n, eval(Filter, lambda x : x.shape)) Filter = - unary.exp(-Filter**2/kl**2) * unary.exp(-kh**2/Filter**2) * Filter**n Filter = compensate2factor(Filter) p = complex_mul(deltak, Filter) #gradient of potential r1 = [] for d in range(pm.ndim): dx1_c = fastpm.apply_transfer(p, fastpm.fourier_space_neg_gradient(d, pm, order=1)) dx1_r = fastpm.c2r(dx1_c) dx1l = fastpm.readout(dx1_r, xl, None) dx1 = fastpm.gather(dx1l, layout) r1.append(dx1) #displacement S = linalg.stack(r1, axis=-1) alpha = mpi.allbcast(alpha, comm=pm.comm) alpha = linalg.broadcast_to(alpha, eval(S, lambda x : x.shape)) S = S * alpha X = X+S return X
def model(self, x): return linalg.broadcast_to(x, self.shape)
def model(self, x): result = self.a * linalg.broadcast_to(linalg.reshape(x, (5, 1)), (5, 2)) return result
def func(x, n): a = linalg.take(n, 0, axis=0) a = linalg.broadcast_to(a, eval(x, lambda x: x.shape)) return x + a