def close_GUI(self): self.save_Settings() flowOut = DAQPin( gv.flowOutPin ) # want to make sure that flowrate is zero when program closes flowOut.write(0.0) # zero flowrate by writing zero voltage flowOut.close() print('FLow stopped') self.window.destroy() sys.exit()
def make_Flow(self, flowDesired): flowOut = DAQPin(gv.flowOutPin) if flowDesired > 500.0: raise Exception('REQUESTED FLOW IS GREATER THAN MAXIMUM') elif flowDesired > 0.0: volt = (flowDesired / (self.MKSFullScale * self.scaleFact)) * 5.0 flowOut.write(volt) else: flowOut.write(0.0) flowOut.close(zero=False)
def Li_Reference_Check(self): plt.close('all') voltArr = np.linspace(gv.minScanVal, gv.maxScanVal, num=250) temp = [] galvoOut = DAQPin(gv.galvoOutPin) liRefIn = DAQPin(gv.lithiumRefInPin) for volt in voltArr: galvoOut.write(volt) temp.append(liRefIn.read(numSamples=1000)) galvoOut.close() liRefIn.close() plt.plot(voltArr, temp) plt.grid() plt.title('Lithium reference chamber signal vs galvo voltage') plt.xlabel('Galvo voltage, v') plt.ylabel('PMT voltage, v') plt.show()
class GUI: def __init__(self): self.settingsList = [] self.x1Box = None self.x2Box = None self.y1Box = None self.y2 = None self.voltArr = None #array to to hold voltage value sto scan over self.camera = None #to hold the camera opject self.galvoOut = None self.shutterOut = None #shutter control self.window = tk.Tk() self.window.title("Simple Scan") self.window.geometry('800x600') lbl1 = tk.Label(self.window, text='Scan Range (V)') lbl1.grid(column=0, row=0) self.voltStartBox = tk.Entry(self.window) self.voltStartBox.config(width=5) self.voltStartBox.grid(column=1, row=0, sticky='W') self.settingsList.append(self.voltStartBox) lbl2 = tk.Label(self.window, text='to') lbl2.grid(column=2, row=0) self.voltStopBox = tk.Entry(self.window) self.voltStopBox.config(width=5) self.voltStopBox.grid(column=3, row=0, sticky='W') self.settingsList.append(self.voltStopBox) lbl3 = tk.Label(self.window, text='Num images') lbl3.grid(column=0, row=1) self.numImagesBox = tk.Entry(self.window) self.numImagesBox.config(width=5) self.numImagesBox.grid(column=1, row=1, sticky='W') self.settingsList.append(self.numImagesBox) lbl31 = tk.Label(self.window, text='Exp time (ms)') lbl31.grid(column=2, row=1) self.expTimeBox = tk.Entry(self.window) self.expTimeBox.config(width=5) self.expTimeBox.grid(column=3, row=1, sticky='W') self.settingsList.append(self.expTimeBox) lbl32 = tk.Label(self.window, text='bin size') lbl32.grid(column=4, row=1) self.binSizeBox = tk.Entry(self.window) self.binSizeBox.config(width=5) self.binSizeBox.grid(column=5, row=1, sticky='W') self.settingsList.append(self.binSizeBox) lbl4 = tk.Label(self.window, text='Camera') lbl4.grid(column=0, row=4) self.cameraVar = tk.StringVar(self.window) self.cameraVar.set("FAR") cameraChoice = ["NEAR", "FAR"] CAMERA_MENU = tk.OptionMenu(self.window, self.cameraVar, *cameraChoice) CAMERA_MENU.grid(column=1, row=4, columnspan=2) self.settingsList.append(self.cameraVar) lbl5 = tk.Label(self.window, text='image x1') lbl5.grid(column=0, row=5) self.x1Box = tk.Entry(self.window) self.x1Box.config(width=5) self.x1Box.grid(column=1, row=5, sticky='W') self.settingsList.append(self.x1Box) lbl5 = tk.Label(self.window, text='image x2') lbl5.grid(column=2, row=5) self.x2Box = tk.Entry(self.window) self.x2Box.config(width=5) self.x2Box.grid(column=3, row=5, sticky='W') self.settingsList.append(self.x2Box) lbl5 = tk.Label(self.window, text='image y1') lbl5.grid(column=0, row=6) self.y1Box = tk.Entry(self.window) self.y1Box.config(width=5) self.y1Box.grid(column=1, row=6, sticky='W') self.settingsList.append(self.y1Box) lbl5 = tk.Label(self.window, text='image y2') lbl5.grid(column=2, row=6) self.y2Box = tk.Entry(self.window) self.y2Box.config(width=5) self.y2Box.grid(column=3, row=6, sticky='W') self.settingsList.append(self.y2Box) self.saveDataVar = tk.BooleanVar() saveDataCheckButton = tk.Checkbutton(self.window, text='save data', variable=self.saveDataVar) saveDataCheckButton.grid(column=1, row=7) self.settingsList.append(self.saveDataVar) self.ratioVar = tk.BooleanVar() ratioVarButton = tk.Checkbutton(self.window, text='ratio', variable=self.ratioVar) ratioVarButton.grid(column=1, row=8) self.settingsList.append(self.ratioVar) self.showPlotVar = tk.BooleanVar() showDataAnalysiButton = tk.Checkbutton(self.window, text='Show plot', variable=self.showPlotVar) showDataAnalysiButton.grid(column=1, row=9) self.settingsList.append(self.showPlotVar) lbl3 = tk.Label(self.window, text='Run name') lbl3.grid(column=0, row=15) self.fileName = tk.Entry(self.window) self.fileName.config(width=20) self.fileName.grid(column=1, row=15, sticky='W', columnspan=20) self.settingsList.append(self.fileName) lbl3 = tk.Label(self.window, text='Folder path') lbl3.grid(column=0, row=16) self.folderPath = tk.Entry(self.window) self.folderPath.config(width=30) self.folderPath.grid(column=1, row=16, sticky='W', columnspan=30) self.settingsList.append(self.folderPath) runButton = tk.Button(self.window, text='RUN', font=("Arial", 20), background="green", command=self.run) runButton.config(height=2, width=10) runButton.grid(column=0, row=17, columnspan=4, rowspan=4) coolCameraButton = tk.Button(self.window, text='cool camera', background="royal blue", command=self.cool_Camera) #coolCameraButton.config(height=2, width=10) coolCameraButton.grid(column=0, row=21, columnspan=4, rowspan=4) self.load_Settings() self.window.protocol("WM_DELETE_WINDOW", self.close_GUI) self.window.mainloop() def cool_Camera(self): if self.cameraVar.get() == "NEAR": print("YOU CAN'T COOL THE NEAR FIELD CAMERA") gv.warning_Sound() else: tempCamera = Camera(self.cameraVar.get(), 1000) #the camera will cool down tempCamera.close() #now close it. It will stay cool though def open_Aperture(self): self.shutterOut.write_High() time.sleep(.05) def close_Aperture(self): self.shutterOut.write_Low() time.sleep(.05) def close_GUI(self): self.save_Settings() self.window.destroy() sys.exit() def run(self): self.save_Settings() self.galvoOut = DAQPin(gv.galvoOutPin) self.shutterOut = DAQPin(gv.shutterPin) self.galvoOut.write(float(self.voltStartBox.get())) x1 = int(self.x1Box.get()) y1 = int(self.y1Box.get()) x2 = int(self.x2Box.get()) y2 = int(self.y2Box.get()) imageParams = [x1, x2, y1, y2] binSize = int(self.binSizeBox.get()) self.camera = Camera(self.cameraVar.get(), float(self.expTimeBox.get()), imageParams=imageParams, bin=binSize) self.voltArr = np.linspace(float(self.voltStartBox.get()), float(self.voltStopBox.get()), num=int(self.numImagesBox.get())) if os.path.isdir(self.folderPath.get()) == False: print('-----ERROR-----------') print('YOU HAVE ENTERED AN INVALID FOLDERPATH') if os.path.isfile(self.folderPath.get() + '\\' + self.fileName.get() + '.png') == True: print('--------------ERROR-------') print('THERE IS ALREADY A FILE WITH THAT NAME IN THAT FOLDER') gv.error_Sound() sys.exit() plt.close('all') if self.ratioVar.get() == True: self.sweep_Ratio() else: self.sweep_Single() def take_Dark_Image_Average(self, num=3): image = self.camera.aquire_Image() for i in range(num - 1): image += self.camera.aquire_Image() image = image / num #average the three images return image def sweep_Ratio(self): gv.begin_Sound() self.galvoOut.write(self.voltArr[0]) image1MeanList = [] #shutter open list of image sums image2MeanList = [] #shutter closed list of image sums image1List = [] image2List = [] for volt in self.voltArr: self.galvoOut.write(volt) #take with shutter open self.open_Aperture() image1 = self.camera.aquire_Image() image1List.append(image1) image1MeanList.append(np.mean(image1)) #take with shutter closed self.close_Aperture() image2 = self.camera.aquire_Image() image2List.append(image2) image2MeanList.append(np.mean(image2)) self.galvoOut.close() self.shutterOut.close() self.camera.close() gv.finished_Sound() y1 = np.asarray(image1MeanList) #shutter open y2 = np.asarray(image2MeanList) #shutter closed numImages = 3 delta1 = np.max(y1) - np.mean((y1[:numImages] + y1[-numImages:]) / 2) delta2 = np.max(y2) - np.mean((y2[:numImages] + y2[-numImages:]) / 2) ratio = delta1 / delta2 plt.suptitle('Signal with shutter closed and open') plt.title('ratio of peaks of open to close = ' + str(np.round(ratio, 6))) plt.plot(self.voltArr, y1, label='open,delta= ' + str(np.round(delta1, 1))) plt.plot(self.voltArr, y2, label='close,delta= ' + str(np.round(delta2, 1))) plt.xlabel('Volts') plt.ylabel('Pixel counts') plt.legend() plt.grid() if self.saveDataVar.get() == True: plt.savefig(self.folderPath.get() + '\\' + self.fileName.get() + 'Graph.png') image1SaveList = [] image2SaveList = [] for i in range(len(image1List)): image1SaveList.append(np.rot90(np.transpose(image1List[i]))) image2SaveList.append(np.rot90(np.transpose(image2List[i]))) hdu1 = fits.PrimaryHDU( image1SaveList) #make a Header/Data Unit of images hdul1 = fits.HDUList([hdu1]) #list of HDUs to save hdu2 = fits.PrimaryHDU( image2SaveList) #make a Header/Data Unit of images hdul2 = fits.HDUList([hdu2]) #list of HDUs to save fitsFileName = self.fileName.get() try: hdul1.writeto(self.folderPath.get() + '\\' + fitsFileName + 'ShutterOpen.fits') #now save it hdul2.writeto(self.folderPath.get() + '\\' + fitsFileName + 'ShutterClosed.fits') #now save it except: #fits doesn't let you delete stuff accidently print('THAT FILE ALREADY EXISTS. DELETE IT TO OVERWRITE@') if self.showPlotVar.get() == True: plt.show() def sweep_Single(self): #self.close_Aperture() gv.begin_Sound() self.galvoOut.write(self.voltArr[0]) darkImage = self.take_Dark_Image_Average() imageMeanList = [] imageList = [] for volt in self.voltArr: self.galvoOut.write(volt) image = self.camera.aquire_Image() imageList.append(image) image = image - darkImage * 0 imageMeanList.append(np.mean(image)) imageSumArr = np.asarray(imageMeanList) self.galvoOut.close() self.shutterOut.close() self.camera.close() gv.finished_Sound() numImages = 3 delta = np.max(imageSumArr) - np.mean( (imageSumArr[:numImages] + imageSumArr[-numImages:]) / 2) plt.plot(self.voltArr, imageSumArr) plt.title('Peak minus first few values= ' + str(np.round(delta, 2))) plt.xlabel('Volts') plt.ylabel('Pixel counts') plt.grid() if self.saveDataVar.get() == True: print(self.folderPath.get() + '\\' + self.fileName.get() + 'Graph') plt.savefig(self.folderPath.get() + '\\' + self.fileName.get()) #save plot #now save fits file saveImageList = [] for item in imageList: saveImageList.append(np.rot90(np.transpose(item))) hdu = fits.PrimaryHDU( saveImageList) #make a Header/Data Unit of images hdul = fits.HDUList([hdu]) #list of HDUs to save fitsFileName = self.fileName.get() + '.fits' try: hdul.writeto(self.folderPath.get() + '\\' + fitsFileName) #now save it except: #fits doesn't let you delete stuff accidently print('THAT FILE ALREADY EXISTS. DELETE IT TO OVERWRITE@') if self.showPlotVar.get() == True: plt.show() def save_Settings(self): file = open("simpleScaneGUI_Settings.txt", "w") for item in self.settingsList: file.write(str(item.get()) + '\n') file.close() def load_Settings(self): try: file = open("simpleScaneGUI_Settings.txt", "r") except: print("NO SETTINGS FILE FOUND") return i = 0 for item in file: item = item.strip() if i >= len(self.settingsList): pass else: if isinstance(self.settingsList[i], tk.StringVar): self.settingsList[i].set(item) elif isinstance(self.settingsList[i], tk.Entry): self.settingsList[i].insert(0, item) elif isinstance(self.settingsList[i], tk.BooleanVar): if item == 'False' or item == 'True': self.settingsList[i].set(item) i += 1 file.close()
class AbsorptionImager: def __init__(self, path, runName, voltStart, voltEnd, numPoints, exposure_Seconds): self.path = path self.runName = runName self.voltStart = voltStart self.numPoints = numPoints self.voltArr = np.linspace(voltStart, voltEnd, numPoints) self.exposure_MilliSeconds = exposure_Seconds * 1000 self.MKSFullScale = 500.0 #full scale of N2, sccm self.scaleFact = 1.4 #scael factor for He self.flowRate = 50.0 self.binning = 1 #don't use binnig for absorption self.nozzleWaitTime_Seconds = 5 #time to wait for turning on or off the nozzle self.waitTimeToFlow_Seconds = self.nozzleWaitTime_Seconds - exposure_Seconds if self.waitTimeToFlow_Seconds < 0.0: self.waitTimeToFlow_Seconds = 0.0 self.waitTimeToStopFlow_Seconds = self.nozzleWaitTime_Seconds self.camera = Camera('FAR', self.exposure_MilliSeconds, bin=self.binning) self.galvoOut = DAQPin(gv.galvoOutPin) self.shutterOut = DAQPin(gv.shutterPin) #open the shutter contorl pin self.darkImageList = [] self.noFlowImageList = [] self.flowImageList = [] self.absorptionSignalImageList = [] def catch_Errors(self): if self.flowRate <= 0: gv.error_Sound() raise Exception('The flowrate is zero or invalid!') if self.exposure_MilliSeconds < 500: gv.error_Sound() raise Exception( 'The camera exposure is too low. Remember you enter it as seconds' ) def make_Info_File(self): with open('info.txt', 'w') as file: file.write('Run Info \n') file.write('Exposure time: ' + str(self.exposure_MilliSeconds) + ' ms \n') file.write('flow wait time: ' + str(self.nozzleWaitTime_Seconds) + 's \n') file.write('binning :' + str(self.binning) + '\n') file.write('Nozzle flow rate: ' + str(self.flowRate) + ' SCCM \n') file.write('Image galvo voltages: ' + str(self.voltArr) + ' volts \n') def save_Images(self, name, imageList): hdu = fits.PrimaryHDU(np.asarray(imageList)) hdul = fits.HDUList([hdu]) hdul.writeto(name + '.fits') def make_Flow(self, flowDesired): flowOut = DAQPin(gv.flowOutPin) if flowDesired > 500.0: raise Exception('REQUESTED FLOW IS GREATER THAN MAXIMUM') elif flowDesired > 0.0: volt = (flowDesired / (self.MKSFullScale * self.scaleFact)) * 5.0 flowOut.write(volt) else: flowOut.write(0.0) flowOut.close(zero=False) def take_Dark_Image(self): self.shutterOut.close_Shutter() image = self.camera.aquire_Image().astype(float) self.shutterOut.open_Shutter() return image def take_No_Flow_Image(self): image = self.camera.aquire_Image().astype(float) return image def take_Flow_Image(self): image = self.camera.aquire_Image().astype(float) return image def make_Copies_To_Not_Modify_Originals(self, darkImage, noFlowImage, flowImage): #copy the images to prevent modifying them by accident! noFlowImage = noFlowImage.copy() flowImage = flowImage.copy() darkImage = darkImage.copy() return darkImage, noFlowImage, flowImage def construct_Absorption_Signal_Image(self, darkImage, noFlowImage, flowImage): eps = 1.0 #to avoid divide by zero darkImage, noFlowImage, flowImage = self.make_Copies_To_Not_Modify_Originals( darkImage, noFlowImage, flowImage) noFlowImage = noFlowImage - darkImage flowImage = flowImage - darkImage flowImage[ np.abs(flowImage) < eps] = eps #get rid of small numbers to prevent divide by zero noFlowImage[np.abs(noFlowImage) < eps] = eps signalImage = flowImage / noFlowImage return signalImage def save_Image_Lists(self): self.save_Images(self.runName + '_darkImages', self.darkImageList) self.save_Images(self.runName + '_noFlowImages', self.noFlowImageList) self.save_Images(self.runName + '_flowImages', self.flowImageList) self.save_Images(self.runName + '_absorptionSignalImages', self.absorptionSignalImageList) def change_Directory_And_Catch_File_Errors(self): imagesFolder = self.runName + 'Folder' try: os.mkdir(self.path + '\\' + imagesFolder) except FileExistsError: gv.error_Sound() print('That file already exists!!') exit() except: raise Exception('some other file issue') os.chdir(self.path + '\\' + imagesFolder) def update_Image_Lists(self, darkImage, noFlowImage, flowImage, absorptionSignalImage): self.darkImageList.append(darkImage) self.noFlowImageList.append(noFlowImage) self.flowImageList.append(flowImage) self.absorptionSignalImageList.append(absorptionSignalImage) def close_Pins(self): self.galvoOut.close() self.shutterOut.close() def wait_To_Flow_After_Dark_Image(self, ): time.sleep(self.waitTimeToFlow_Seconds) def wait_To_Stop_Flow_After_Flow_Image(self): time.sleep(self.waitTimeToStopFlow_Seconds) def run(self): self.change_Directory_And_Catch_File_Errors() self.catch_Errors() gv.begin_Sound() self.make_Flow(0.0) self.shutterOut.open_Shutter() for volt in self.voltArr: print(volt) self.galvoOut.write(volt) noFlowImage = self.take_No_Flow_Image() self.make_Flow(self.flowRate) darkImage = self.take_Dark_Image() self.wait_To_Flow_After_Dark_Image() flowImage = self.take_Flow_Image() self.make_Flow(0.0) self.wait_To_Stop_Flow_After_Flow_Image() absorptionSignalImage = self.construct_Absorption_Signal_Image( darkImage, noFlowImage, flowImage) self.update_Image_Lists(darkImage, noFlowImage, flowImage, absorptionSignalImage) self.close_Pins() self.save_Image_Lists() self.make_Info_File() gv.finished_Sound()
class Sweeper: def __init__(self, GUI): self.GUI = GUI self.cameraNear = None self.cameraFar = None self.DAQDataArr = None #array to hold data read from DAQ board. each row is a sample of data like # [outputVoltage, Lithium reference chamber voltage] self.imageArrList = [ ] #list to hold array of images. looks like [[imageN1,imageF1],[imageN2,imageF2],..] #where each image is a numpy array. So first image in each pair is for near, second for far self.galvoOut = DAQPin(gv.galvoOutPin) self.lithiumRefIn = DAQPin(gv.lithiumRefInPin) self.minVolt = gv.minScanVal self.maxVolt = gv.maxScanVal self.DAQVoltArr = np.linspace(self.minVolt, self.maxVolt, num=int((self.maxVolt - self.minVolt) * gv.samplesPerVoltDAQ)) x1N = int(GUI.x1NearBox.get()) x2N = int(GUI.x2NearBox.get()) y1N = int(GUI.y1NearBox.get()) y2N = int(GUI.y2NearBox.get()) self.imageParamNear = [x1N, x2N, y1N, y2N] x1F = int(GUI.x1FarBox.get()) x2F = int(GUI.x2FarBox.get()) y1F = int(GUI.y1FarBox.get()) y2F = int(GUI.y2FarBox.get()) self.imageParamFar = [x1F, x2F, y1F, y2F] self.numExp = int(GUI.expNumBox.get()) self.imageStartVolt = float(GUI.startVoltBox.get()) self.imageStopVolt = float(GUI.stopVoltBox.get()) self.expTimeNear = int(GUI.expTimeNearBox.get()) self.expTimeFar = int(GUI.expTimeFarBox.get()) self.binSizeNear = int(self.GUI.binSizeNearBox.get()) self.binSizeFarX = int(self.GUI.binSizeFarBoxX.get()) self.binSizeFarY = int(self.GUI.binSizeFarBoxY.get()) if self.imageStartVolt < self.minVolt or self.imageStartVolt > self.maxVolt or self.imageStopVolt < self.minVolt or self.imageStopVolt > self.maxVolt: raise Exception( 'VOLTAGE RANGE FOR IMAGE SWEEP EXCEEDS MAXIMUM AND/OR MINIMUM ALLOWED RANGE!' ) if self.imageStopVolt < self.imageStartVolt: raise Exception( 'ENDING VOLTAGE IS BEFORE STARTING VOLTAGE FOR IMAGE SWEEP!') self.imageVoltArr = np.linspace(self.imageStartVolt, self.imageStopVolt, num=self.numExp) def sweep(self): #this sweeps the galvo output voltage. There are two arrays, DAQVoltArr and imageVoltArr. DAQVoltArr contains all #the voltage values to collect DAQ data at. imageVoltArr contains the values to take iamges at. imageVolt array's #range must be less than or equal to DAQVoltArr's range. The loop searchs for which step is next, jumps to that point #and then increments the counter. self._initialize_Cameras() if self.cameraNear is not None: for _ in range(10): self.cameraNear.aquire_Image() i = 0 #counter for DAQVoltArr j = 0 #coutner for imageVoltArr loop = True volt = 0 tempList = [] gv.begin_Sound() lastImage = False #this is so that the last image is taken. It will flip from False to True once, and then no more #images takeImage = False #wether to take images totalSteps = self.DAQVoltArr.shape[0] + self.imageVoltArr.shape[0] print('\n \n \n \n') print('-----SWEEPING NOW----') time.sleep( .001 ) #if you don't wait a little then the progress bar and other messages will get messed up #in the terminal because they will try to write on top of each other progressBar = tqdm(total=totalSteps) while loop == True: progressBar.update() if i == self.DAQVoltArr.shape[ 0] - 1 and j == self.imageVoltArr.shape[0] - 1: loop = False volt = self.DAQVoltArr[i] if lastImage == False: #if the last image occurs at the last DAQ voltage as well takeImage = True lastImage = False else: if self.DAQVoltArr[i] == self.imageVoltArr[ j]: #if potential next voltages are equal volt = self.DAQVoltArr[i] if i != self.DAQVoltArr.shape[ 0] - 1: #don't increment if its at the end! i += 1 if j != self.imageVoltArr.shape[ 0] - 1: #don't increment if its at the end! j += 1 takeImage = True elif self.DAQVoltArr[i] < self.imageVoltArr[j]: if i != self.DAQVoltArr.shape[ 0] - 1: #don't increment if its at the end! volt = self.DAQVoltArr[i] i += 1 else: volt = self.imageVoltArr[i] j += 1 takeImage = True elif self.imageVoltArr[j] < self.DAQVoltArr[i]: if j != self.imageVoltArr.shape[ 0] - 1: #don't increment if its at the end! volt = self.imageVoltArr[j] j += 1 takeImage = True elif lastImage == False: #special case for taking the last image lastImage = True #Now it won't do this again. The loop will come here from now on, but it won't #do anything but increment the galvo voltage because j!=self.imageVoltArr.shape[0]-1 will be\ #false and lastImage==False will be false also volt = self.imageVoltArr[j] takeImage = True else: volt = self.DAQVoltArr[i] i += 1 self.galvoOut.write(volt) tempList.append([volt, self.lithiumRefIn.read(numSamples=1000)]) if takeImage == True: #for i in range(10): # self._take_Exposures() #print((time.time()-t)/10) self.imageArrList.append( self._take_Exposures() ) #the appended object is a list like [imageNear,imageFar]. If #there is no camera active for a given image the entry is None takeImage = False progressBar.close() time.sleep( .01 ) #like I said above. Pause to allow the progress bar to finish writting so it doesn't get messed up print('-----END OF SWEEP-----') self._close_DAQ_Pins() self._close_Cameras() self.DAQDataArr = np.asarray(tempList) gv.finished_Sound() #np.savetxt('data1.txt',self.DAQDataArr) #y=self.DAQDataArr[:,1] #plt.plot(y) #plt.show() self.GUI.imageArrList = self.imageArrList #this way if there is a previous list it is overwritten self.GUI.DAQDataArr = self.DAQDataArr def _close_DAQ_Pins(self): self.galvoOut.close() self.lithiumRefIn.close() def _initialize_Cameras(self): binNearX = self.binSizeNear binNearY = self.binSizeNear binFarX = self.binSizeFarX binFarY = self.binSizeFarY if binFarX <= 0 and binFarY <= 0: raise Exception('Both bin values cannot be zero') elif binFarX == 0: binFarX = binFarY elif binFarY == 0: binFarY = binFarX if binNearX <= 0 and binNearY <= 0: raise Exception('Both bin values cannot be zero') elif binNearX == 0: binNearX = binNearY elif binNearY == 0: binNearY = binNearX if self.GUI.cameraVarData.get() == 'BOTH': self.cameraFar = Camera('FAR', self.expTimeFar, self.imageParamFar, binx=binFarX, biny=binFarY) self.cameraNear = Camera('NEAR', self.expTimeNear, self.imageParamNear, binx=binNearX, biny=binNearY) elif self.GUI.cameraVarData.get() == 'NEAR': self.cameraNear = Camera('NEAR', self.expTimeNear, self.imageParamNear, binx=binNearX, biny=binNearY) elif self.GUI.cameraVarData.get() == 'FAR': self.cameraFar = Camera('FAR', self.expTimeFar, self.imageParamFar, binx=binFarX, biny=binFarY) else: gv.error_Sound() raise Exception('NO VALID CAMERA NAME PROVIDED') def _take_Exposure_Wrapper(self, resultsDict, camera): #wrapper for taking images concurrently. if camera.camName == 'NEAR': resultsDict['NEAR'] = self.cameraNear.aquire_Image() elif camera.camName == 'FAR': resultsDict['FAR'] = self.cameraFar.aquire_Image() else: gv.error_Sound() raise Exception('NO VALID CAMERA NAME PROVIDED') def _take_Exposures(self): if self.GUI.cameraVarData.get() == 'BOTH': resultsDict = { } #this is used to add the images taken concurrently. I use a dictionary so I can keep track of #which image belongs to which camera T1 = threading.Thread(target=self._take_Exposure_Wrapper, args=(resultsDict, self.cameraNear)) T2 = threading.Thread(target=self._take_Exposure_Wrapper, args=(resultsDict, self.cameraFar)) T1.start() T2.start() T1.join() T2.join() imgNear = resultsDict['NEAR'] imgFar = resultsDict['FAR'] return [imgNear, imgFar] elif self.GUI.cameraVarData.get() == 'NEAR': imgNear = self.cameraNear.aquire_Image() return [imgNear, None] elif self.GUI.cameraVarData.get() == 'FAR': imgFar = self.cameraFar.aquire_Image() return [None, imgFar] else: gv.error_Sound() raise Exception('NO VALID CAMERA NAME PROVIDED') def _close_Cameras(self): if self.GUI.cameraVarData.get() == 'BOTH': self.cameraNear.close() self.cameraFar.close() elif self.GUI.cameraVarData.get() == 'NEAR': self.cameraNear.close() elif self.GUI.cameraVarData.get() == 'FAR': self.cameraFar.close() else: raise Exception('NO VALID CAMERA NAME PROVIDED')
#half max of of the peak. Make sure that the offset isn't so large that the linear approx. breaks down. datapoints = 100 samples = 10 offset = 2 wait_time = 1 #wait time in (s) between samples #FSR of the Elaton FSR = 1000 #Construct the Etalon's signal over a designated voltage range. galvoOut = DAQPin(gv.galvoOutPin) voltArr = np.linspace(-0.75, 1.25, num=datapoints) signalArr = [] laserPin = DAQPin(gv.laserWidthInPin) for volt in voltArr: galvoOut.write(volt) time.sleep(0.01) signalArr.append(laserPin.read(numSamples=1000, average=True)) print(laserPin.read(numSamples=1000, average=True)) laserPin.close() galvoOut.close() #Find the max of each of the two peaks in terms of x and y voltages as well as the min value between them. midway = int(datapoints / 2) FirstPeak = np.argmax(signalArr[0:midway]) SecondPeak = midway + np.argmax(signalArr[midway:datapoints]) MinBetweenPeaks = FirstPeak + np.argmin(signalArr[FirstPeak:SecondPeak]) DeltaPeaks = SecondPeak - FirstPeak FirstPeakVoltage = signalArr[FirstPeak] SecondPeakVoltage = signalArr[SecondPeak] MidwayVoltage = signalArr[MinBetweenPeaks]
class GUI: def __init__(self): self.settingsList = [ ] #list of tkinter field objects to save to a settings file self.x1Box = None #tkinter box object for image parameters self.x2Box = None #tkinter box object for image parameters self.y1Box = None #tkinter box object for image parameters self.y2Box = None #tkinter box object for image parameters self.voltOnResArr = None #array to to hold voltage values to scan over near resonance self.voltPlotArr = None #array to be used in plotting self.camera = None #to hold the camera opject self.galvoOut = None #galvo voltage control self.shutterOut = DAQPin(gv.shutterPin) #shutter control for OP laser self.sigmaGuess = .025 #guess of value for sigma in volts self.gammaGuess = 1e-3 #guess for value of gamma in volts self.window = tk.Tk() self.window.title("Fast Height Finder") self.window.geometry('800x600') lbl1 = tk.Label(self.window, text='Profile Center (v)') lbl1.grid(column=0, row=0, sticky='E') self.v0Box = tk.Entry(self.window) self.v0Box.config(width=5) self.v0Box.grid(column=1, row=0, sticky='W') self.settingsList.append(self.v0Box) lbl32 = tk.Label(self.window, text='bin size') lbl32.grid(column=2, row=0) self.binSizeBox = tk.Entry(self.window) self.binSizeBox.config(width=5) self.binSizeBox.grid(column=3, row=0, sticky='W') self.settingsList.append(self.binSizeBox) lbl3 = tk.Label(self.window, text='FWHM (v)') lbl3.grid(column=0, row=1, sticky='E') self.fwhmBox = tk.Entry(self.window) self.fwhmBox.config(width=5) self.fwhmBox.grid(column=1, row=1, sticky='W') self.settingsList.append(self.fwhmBox) lbl3 = tk.Label(self.window, text='num images off resonance') lbl3.grid(column=0, row=2) self.numImgOffResBox = tk.Entry(self.window) self.numImgOffResBox.config(width=5) self.numImgOffResBox.grid(column=1, row=2, sticky='W') self.settingsList.append(self.numImgOffResBox) lbl31 = tk.Label(self.window, text='Exp time (ms)') lbl31.grid(column=2, row=1) self.expTimeBox = tk.Entry(self.window) self.expTimeBox.config(width=5) self.expTimeBox.grid(column=3, row=1, sticky='W') self.settingsList.append(self.expTimeBox) lbl3 = tk.Label(self.window, text='num images on resonance') lbl3.grid(column=0, row=3) self.numImgOnResBox = tk.Entry(self.window) self.numImgOnResBox.config(width=5) self.numImgOnResBox.grid(column=1, row=3, sticky='W') self.settingsList.append(self.numImgOnResBox) lbl5 = tk.Label(self.window, text='image x1') lbl5.grid(column=0, row=4) self.x1Box = tk.Entry(self.window) self.x1Box.config(width=5) self.x1Box.grid(column=1, row=4, sticky='W') self.settingsList.append(self.x1Box) lbl5 = tk.Label(self.window, text='image x2') lbl5.grid(column=2, row=4) self.x2Box = tk.Entry(self.window) self.x2Box.config(width=5) self.x2Box.grid(column=3, row=4, sticky='W') self.settingsList.append(self.x2Box) lbl5 = tk.Label(self.window, text='image y1') lbl5.grid(column=0, row=5) self.y1Box = tk.Entry(self.window) self.y1Box.config(width=5) self.y1Box.grid(column=1, row=5, sticky='W') self.settingsList.append(self.y1Box) lbl5 = tk.Label(self.window, text='image y2') lbl5.grid(column=2, row=5) self.y2Box = tk.Entry(self.window) self.y2Box.config(width=5) self.y2Box.grid(column=3, row=5, sticky='W') self.settingsList.append(self.y2Box) lbl4 = tk.Label(self.window, text='Camera') lbl4.grid(column=0, row=6) self.cameraVar = tk.StringVar(self.window) self.cameraVar.set("FAR") cameraChoice = ["NEAR", "FAR"] CAMERA_MENU = tk.OptionMenu(self.window, self.cameraVar, *cameraChoice) CAMERA_MENU.grid(column=1, row=6, columnspan=2, sticky='W') self.settingsList.append(self.cameraVar) lbl4 = tk.Label(self.window, text='Shutter') lbl4.grid(column=2, row=6) self.shutterVar = tk.StringVar(self.window) self.shutterVar.set("OPEN") shutterChoice = ["CLOSED", "OPEN"] shutter_MENU = tk.OptionMenu(self.window, self.shutterVar, *shutterChoice, command=self.toggle_Shutter) shutter_MENU.grid(column=3, row=6, columnspan=2, sticky='W') self.settingsList.append(self.shutterVar) self.saveDataVar = tk.BooleanVar() saveDataCheckButton = tk.Checkbutton(self.window, text='save data', variable=self.saveDataVar) saveDataCheckButton.grid(column=1, row=7) self.settingsList.append(self.saveDataVar) self.ratioVar = tk.BooleanVar() ratioVarButton = tk.Checkbutton(self.window, text='ratio', variable=self.ratioVar) ratioVarButton.grid(column=1, row=8) self.settingsList.append(self.ratioVar) self.showPlotVar = tk.BooleanVar() showDataAnalysiButton = tk.Checkbutton(self.window, text='Show plot', variable=self.showPlotVar) showDataAnalysiButton.grid(column=1, row=9) self.settingsList.append(self.showPlotVar) lbl3 = tk.Label(self.window, text='Run name') lbl3.grid(column=0, row=15) self.fileName = tk.Entry(self.window) self.fileName.config(width=60) self.fileName.grid(column=1, row=15, sticky='W', columnspan=40) self.settingsList.append(self.fileName) lbl3 = tk.Label(self.window, text='Folder path') lbl3.grid(column=0, row=16) self.folderPath = tk.Entry(self.window) self.folderPath.config(width=60) self.folderPath.grid(column=1, row=16, sticky='W', columnspan=40) self.settingsList.append(self.folderPath) runButton = tk.Button(self.window, text='RUN', font=("Arial", 20), background="green", command=self.run) runButton.config(height=2, width=10) runButton.grid(column=0, row=17, columnspan=4, rowspan=4) coolCameraButton = tk.Button(self.window, text='cool camera', background="royal blue", command=self.cool_Camera) #coolCameraButton.config(height=2, width=10) coolCameraButton.grid(column=0, row=21, columnspan=4, rowspan=4) self.load_Settings() self.window.protocol("WM_DELETE_WINDOW", self.close_GUI) self.window.mainloop() def toggle_Shutter(self, x): if x == 'CLOSED': self.close_Aperture() if x == 'OPEN': self.open_Aperture() def cool_Camera(self): #cool the far field camera down if self.cameraVar.get() == "NEAR": print("YOU CAN'T COOL THE NEAR FIELD CAMERA") gv.warning_Sound() else: tempCamera = Camera(self.cameraVar.get(), 1000) #the camera will cool down tempCamera.close() #now close it. It will stay cool though def open_Aperture(self): #open the OP shutter self.shutterOut.write_Low() time.sleep(.01) def close_Aperture(self): #close the OP shutter self.shutterOut.write_High() time.sleep(.01) def close_GUI(self): self.shutterOut.close() self.save_Settings() self.window.destroy() sys.exit() def initialize_Camera(self): x1 = int(self.x1Box.get()) #image region values y1 = int(self.y1Box.get()) #image region values x2 = int(self.x2Box.get()) #image region values y2 = int(self.y2Box.get()) #image region values imageParams = [x1, x2, y1, y2] binSize = int(self.binSizeBox.get()) #binning value #initialize camera object. can be near or far field camera expTime = int(self.expTimeBox.get()) #exposure time, ms whichCam = self.cameraVar.get() #which camera to use, 'FAR' or 'NEAR' self.camera = Camera(whichCam, expTime, imageParams=imageParams, bin=binSize) def close_Camera(self): self.camera.close() self.camera = None def initialize_Scan_And_Plot_Arrays(self): v0 = float(self.v0Box.get()) #center value of transition from user df = float(self.fwhmBox.get()) #fwhm value from user offResFact = 4 #go this many fwhm away from center for 'far' off resonance background numImagesOnRes = int(self.numImgOnResBox.get() ) #number of images to take near the resonance numImagesOffRes = int(self.numImgOffResBox.get()) self.voltOffResArr = np.linspace( v0 - offResFact * df - df / 2, v0 - offResFact * df + df / 2, num=numImagesOffRes ) #voltage value to take images at 'far' off resonance self.voltOnResArr = np.linspace( v0 - 1.5 * df, v0 + 1.5 * df, num=numImagesOnRes ) #array of voltages to take images of near the peak self.voltPlotArr = np.linspace( v0 - (offResFact + 1) * df, v0 + (offResFact + 1) * df, num=1000) #voltages to make plot with. This should #be dense and uniform so it looks good def run(self): self.save_Settings() self.initialize_Camera() if os.path.isdir(self.folderPath.get()) == False: print('-----ERROR-----------') print('YOU HAVE ENTERED AN INVALID FOLDERPATH') if os.path.isfile(self.folderPath.get() + '\\' + self.fileName.get() + '.png') == True: print('--------------ERROR-------') print('THERE IS ALREADY A FILE WITH THAT NAME IN THAT FOLDER') gv.error_Sound() sys.exit() if self.ratioVar.get() == True: self.sweep_With_Shutter() else: self.sweep_Without_Shutter() self.camera.close() def sweep_With_Shutter(self): self.initialize_Scan_And_Plot_Arrays() self.initialize_Camera() voltList = [] #list to hold voltage values of corresponding images signalList1 = [] #list for signal values for apeture open signalList2 = [] #list for signal values for apeture open gv.begin_Sound(noWait=True) #beep without waiting after the beep self.galvoOut = DAQPin(gv.galvoOutPin) #open the galvo control pin #take images 'far' off resonance. This scan is very close to together for volt in self.voltOffResArr: print(volt) self.galvoOut.write(volt) #move galvo to new position voltList.append(volt) #record the voltage value self.open_Aperture() #'turn on' the optical pumping img = self.camera.aquire_Image() signalList1.append(np.mean(img)) self.close_Aperture() #'turn off' the optical pumping img = self.camera.aquire_Image() signalList2.append(np.mean(img)) #now sweep around the peak near resonance for volt in self.voltOnResArr: self.galvoOut.write(volt) #move galvo to new position voltList.append(volt) #record the voltage value self.open_Aperture() #'turn on' the optical pumping img = self.camera.aquire_Image() #capture an image signalList1.append(np.mean(img)) #add the average of the pixels self.close_Aperture() #'turn off' the optical pumping img = self.camera.aquire_Image() #capture an image signalList2.append(np.mean(img)) #add the average of the pixels self.galvoOut.close() #close and zero the pin self.open_Aperture() #open the shutter up again when done gv.finished_Sound(noWait=True) #beep without waiting after the beep #convert lists to arrays signalArr1 = np.asarray(signalList1) signalArr2 = np.asarray(signalList2) voltArr = np.asarray(voltList) #fit the data and get the optimal parameters and the error params1, perr1 = self.fit_Data(voltArr, signalArr1) params2, perr2 = self.fit_Data(voltArr, signalArr2) plt.close('all') plt.figure(figsize=(13, 8)) plt.plot(self.voltPlotArr, self.spectral_Profile(self.voltPlotArr, *params1), c='blue', label='fit, opened shutter') plt.plot(self.voltPlotArr, self.spectral_Profile(self.voltPlotArr, *params2), c='red', label='fit, closed shutter') plt.scatter(voltArr, signalArr1, label='data, opened shutter', c='blue') plt.scatter(voltArr, signalArr2, label='data, closed shutter', c='red', marker='x', s=100) v0 = (params1[0] + params2[0] ) / 2 #Get the center from the average of the two centers floor = (params1[1] + params2[1] ) / 2 #get the floor from the average of the two floors #now use the v0 above for when the user runs again. This helps compensate for the laser drifting without the user #having to self.v0Box.delete(0, 'end') #clear existing number self.v0Box.insert(0, str(np.round(v0, 3))) #insert new number plt.axvline(x=v0, c='r', linestyle=':') plt.grid() plt.text(v0, floor, np.round(float(v0), 3)) #TODO: WHY IS THIS NOT WORKING ONLY HERE? plt.legend() ratio = np.round(params1[1] / params2[1], 2) error = np.round( ratio * np.sqrt((perr1[1] / params1[1])**2 + (perr2[1] / params2[1])**2), 3) plt.suptitle('Ratio of open to close shutter height = ' + str(ratio) + ' +/- ' + str(error)) plt.title("shutter open= " + str(np.round(params1[1], 2)) + ' +/-' + str(np.round(perr1[1], 1)) + " . shutter closed= " + str(np.round(params2[1], 2)) + ' +/-' + str(np.round(perr2[1], 1))) if self.saveDataVar.get() == True: plt.savefig(self.folderPath.get() + '\\' + self.fileName.get() + 'Graph.png') if self.showPlotVar.get() == True: plt.show() def sweep_Without_Shutter(self): self.initialize_Scan_And_Plot_Arrays() self.initialize_Camera() voltList = [] signalList = [] gv.begin_Sound(noWait=True) #beep without waiting after the beep self.galvoOut = DAQPin(gv.galvoOutPin) #take images 'far' off resonance. This scan is very close to together for volt in self.voltOffResArr: self.galvoOut.write(volt) #move the galvo to a new voltage value voltList.append(volt) #record the voltage img = self.camera.aquire_Image() #capture image signalList.append( np.mean(img)) #add the average of the image's pixels for volt in self.voltOnResArr: print(volt) self.galvoOut.write(volt) #move the galvo to a new voltage value voltList.append(volt) #record the voltage img = self.camera.aquire_Image() #capture image print(np.mean(img)) signalList.append( np.mean(img)) #add the average of the image's pixels self.galvoOut.close() #close and zero the galvo self.camera.close() self.open_Aperture() #open the apeture up when done gv.finished_Sound(noWait=True) #beep without waiting after the beep voltArr = np.asarray(voltList) signalArr = np.asarray(signalList) params, perr = self.fit_Data(voltArr, signalArr) print(params) plt.close('all') plt.plot(self.voltPlotArr, self.spectral_Profile(self.voltPlotArr, *params), c='orange', label='fit') plt.scatter(voltArr, signalArr, label='data') v0 = params[0] floor = params[2] #now use the v0 above for when the user runs again. This helps compensate for the laser drifting without the user #having to self.v0Box.delete(0, 'end') #clear existing number self.v0Box.insert(0, str(np.round(v0, 3))) #insert new number plt.axvline(x=v0, c='r', linestyle=':') plt.text(v0, floor, np.round(float(v0), 3)) plt.legend() plt.grid() plt.title('Height = ' + str(np.round(params[1], 1)) + '+/- ' + str(np.round(perr[1], 1))) if self.saveDataVar.get() == True: plt.savefig(self.folderPath.get() + '\\' + self.fileName.get() + 'Graph.png') if self.showPlotVar.get() == True: plt.show() def fit_Data(self, x, y): print('here') #fit the data to get the optimal parameters x0Guess = float(self.v0Box.get()) aGuess = np.max(y) - np.min(y) bGuess = np.min(y) guess = [x0Guess, aGuess, bGuess, self.sigmaGuess, self.gammaGuess] bounds = ([-5, 0, 0, 0, 0], [5, 100000, 100000, .1, .1]) if bGuess > bounds[1][2] or aGuess > bounds[1][1]: print( 'GUESS VALUES ARE LARGER THAN BOUNDS. SIGNAL STRENGTH IS VERY HIGH' ) gv.error_Sound() sys.exit() try: params, pcov = spo.curve_fit(self.spectral_Profile, x, y, p0=guess, bounds=bounds) except: print('FIT FAILED') plt.plot(x, y) plt.show() perr = np.sqrt(np.diag(pcov)) return params, perr def spectral_Profile(self, x, x0, a, b, sigma, gamma): v0 = sps.voigt_profile(0, sigma, gamma) v = sps.voigt_profile(x - x0, sigma, gamma) return a * (v / v0) + b def save_Settings(self): file = open("fastHeightFinderGUI_Settings.txt", "w") for item in self.settingsList: file.write(str(item.get()) + '\n') file.close() def load_Settings(self): try: file = open("fastHeightFinderGUI_Settings.txt", "r") except: print("NO SETTINGS FILE FOUND") return i = 0 for item in file: item = item.strip() if i >= len(self.settingsList): pass else: if isinstance(self.settingsList[i], tk.StringVar): self.settingsList[i].set(item) elif isinstance(self.settingsList[i], tk.Entry): self.settingsList[i].insert(0, item) elif isinstance(self.settingsList[i], tk.BooleanVar): if item == 'False' or item == 'True': self.settingsList[i].set(item) i += 1 file.close()