Пример #1
0
def get_model(project_dir, train_seq, hparams, num_GPUs, logger, args):
    """
    Initializes a tf.keras Model from MultiPlanarUNet.models as specified in
    hparams['build']. If args.continue_training, the best previous model stored
    in [project_dir]/models will be loaded.

    If hparams["build"]["biased_output_layer"] is True, sets the bias weights
    on the final conv. layer so that a zero-input gives an output of class
    probabilities equal to the class frequencies of the training set.

    If num_GPUs > 1, distribute the model on multiple GPUs

    Args:
        project_dir: A path to a MultiPlanarUNet project folder
        train_seq: A MultiPlanarUNet.sequences object for the training data
        hparams: A MultiPlanarUNet YAMLHParams object
        num_GPUs: An integer, the number of GPUs to train the model on
        logger: A MultiPlanarUNet logging object
        args: argparse arguments

    Returns:
        model: The model to fit
        org_model: The original, non-GPU-distributed model
                   (Same as model if num_GPUs==1)
    """
    from MultiPlanarUNet.models import model_initializer
    # Build new model (or continue training an existing one)
    org_model = model_initializer(hparams=hparams,
                                  continue_training=args.continue_training,
                                  project_dir=project_dir,
                                  logger=logger)

    # Initialize weights in final layer?
    if not args.continue_training and hparams["build"].get(
            "biased_output_layer"):
        from MultiPlanarUNet.utils.utils import set_bias_weights_on_all_outputs
        set_bias_weights_on_all_outputs(org_model, train_seq, hparams, logger)

    # Multi-GPU?
    if num_GPUs > 1:
        from tensorflow.keras.utils import multi_gpu_model
        model = multi_gpu_model(org_model,
                                gpus=num_GPUs,
                                cpu_merge=False,
                                cpu_relocation=False)
        logger("Creating multi-GPU model: N=%i" % num_GPUs)
    else:
        model = org_model
    return model, org_model
Пример #2
0
def run(base_path, gpu_mon, num_GPUs, continue_training, force_GPU, just_one,
        no_val, no_images, debug, wait_for, logger, train_images_per_epoch,
        val_images_per_epoch, **kwargs):

    from MultiPlanarUNet.train import Trainer, YAMLHParams
    from MultiPlanarUNet.models import model_initializer
    from MultiPlanarUNet.preprocessing import get_preprocessing_func

    # Read in hyperparameters from YAML file
    hparams = YAMLHParams(base_path + "/train_hparams.yaml", logger=logger)
    validate_hparams(hparams)

    # Wait for PID?
    if wait_for:
        from MultiPlanarUNet.utils import await_PIDs
        await_PIDs(wait_for)

    # Prepare Sequence generators and potential model specific hparam changes
    f = get_preprocessing_func(hparams["build"].get("model_class_name"))
    train, val, hparams = f(hparams,
                            logger=logger,
                            just_one=just_one,
                            no_val=no_val,
                            continue_training=continue_training,
                            base_path=base_path)

    if gpu_mon:
        # Wait for free GPU
        if not force_GPU:
            gpu_mon.await_and_set_free_GPU(N=num_GPUs, sleep_seconds=120)
        else:
            gpu_mon.set_GPUs = force_GPU
            num_GPUs = len(force_GPU.split(","))
        gpu_mon.stop()

    # Build new model (or continue training an existing one)
    org_model = model_initializer(hparams=hparams,
                                  continue_training=continue_training,
                                  project_dir=base_path,
                                  logger=logger)

    # Initialize weights in final layer?
    if not continue_training and hparams["build"].get("biased_output_layer"):
        from MultiPlanarUNet.utils.utils import set_bias_weights_on_all_outputs
        set_bias_weights_on_all_outputs(org_model, train, hparams, logger)

    # Multi-GPU?
    if num_GPUs > 1:
        from tensorflow.keras.utils import multi_gpu_model
        model = multi_gpu_model(org_model,
                                gpus=num_GPUs,
                                cpu_merge=False,
                                cpu_relocation=False)
        logger("Creating multi-GPU model: N=%i" % num_GPUs)
    else:
        model = org_model

    # Init trainer
    trainer = Trainer(model, logger=logger)
    trainer.org_model = org_model

    # Compile model
    trainer.compile_model(n_classes=hparams["build"].get("n_classes"),
                          **hparams["fit"])

    # Debug mode?
    if debug:
        from tensorflow.python import debug as tfdbg
        from tensorflow.keras import backend as k
        k.set_session(tfdbg.LocalCLIDebugWrapperSession(k.get_session()))

    # Fit the model
    _ = trainer.fit(train=train,
                    val=val,
                    train_im_per_epoch=train_images_per_epoch,
                    val_im_per_epoch=val_images_per_epoch,
                    hparams=hparams,
                    no_im=no_images,
                    **hparams["fit"])

    # Save final model weights (usually not used, but maybe....?)
    if not os.path.exists("%s/model" % base_path):
        os.mkdir("%s/model" % base_path)
    model_path = "%s/model/model_weights.h5" % base_path
    logger("Saving current model to: %s" % model_path)
    org_model.save_weights(model_path)
Пример #3
0
def entry_func(args=None):

    # Get command line arguments
    args = vars(get_argparser().parse_args(args))
    base_dir = os.path.abspath(args["project_dir"])
    _file = args["f"]
    label = args["l"]
    N_extra = args["extra"]
    try:
        N_extra = int(N_extra)
    except ValueError:
        pass

    # Get settings from YAML file
    from MultiPlanarUNet.train.hparams import YAMLHParams
    hparams = YAMLHParams(os.path.join(base_dir, "train_hparams.yaml"))

    # Set strides
    hparams["fit"]["strides"] = args["strides"]

    if not _file:
        try:
            # Data specified from command line?
            data_dir = os.path.abspath(args["data_dir"])

            # Set with default sub dirs
            hparams["test_data"] = {
                "base_dir": data_dir,
                "img_subdir": "images",
                "label_subdir": "labels"
            }
        except (AttributeError, TypeError):
            data_dir = hparams["test_data"]["base_dir"]
    else:
        data_dir = False
    out_dir = os.path.abspath(args["out_dir"])
    overwrite = args["overwrite"]
    predict_mode = args["no_eval"]
    save_only_pred = args["save_only_pred"]

    # Check if valid dir structures
    validate_folders(base_dir, data_dir, out_dir, overwrite)

    # Import all needed modules (folder is valid at this point)
    import numpy as np
    from MultiPlanarUNet.image import ImagePairLoader, ImagePair
    from MultiPlanarUNet.utils import get_best_model, create_folders, \
                                    pred_to_class, await_and_set_free_gpu, set_gpu
    from MultiPlanarUNet.utils.fusion import predict_3D_patches, predict_3D_patches_binary, pred_3D_iso
    from MultiPlanarUNet.logging import init_result_dict_3D, save_all_3D
    from MultiPlanarUNet.evaluate import dice_all
    from MultiPlanarUNet.bin.predict import save_nii_files

    # Fetch GPU(s)
    num_GPUs = args["num_GPUs"]
    force_gpu = args["force_GPU"]
    # Wait for free GPU
    if force_gpu == -1:
        await_and_set_free_gpu(N=num_GPUs, sleep_seconds=240)
    else:
        set_gpu(force_gpu)

    # Read settings from the project hyperparameter file
    dim = hparams["build"]["dim"]
    n_classes = hparams["build"]["n_classes"]
    mode = hparams["fit"]["intrp_style"]

    # Set ImagePairLoader object
    if not _file:
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            **hparams["test_data"])
    else:
        predict_mode = not bool(label)
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            initialize_empty=True)
        image_pair_loader.add_image(ImagePair(_file, label))

    # Put them into a dict and remove from image_pair_loader to gain more control with
    # garbage collection
    all_images = {image.id: image for image in image_pair_loader.images}
    image_pair_loader.images = None
    """ Define UNet model """
    from MultiPlanarUNet.models import model_initializer
    hparams["build"]["batch_size"] = 1
    unet = model_initializer(hparams, False, base_dir)
    model_path = get_best_model(base_dir + "/model")
    unet.load_weights(model_path)

    # Evaluate?
    if not predict_mode:
        # Prepare dictionary to store results in pd df
        results, detailed_res = init_result_dict_3D(all_images, n_classes)

        # Save to check correct format
        save_all_3D(results, detailed_res, out_dir)

    # Define result paths
    nii_res_dir = os.path.join(out_dir, "nii_files")
    create_folders(nii_res_dir)

    image_ids = sorted(all_images)
    for n_image, image_id in enumerate(image_ids):
        print("\n[*] Running on: %s" % image_id)

        # Set image_pair_loader object with only the given file
        image = all_images[image_id]
        image_pair_loader.images = [image]

        seq = image_pair_loader.get_sequencer(n_classes=n_classes,
                                              no_log=True,
                                              **hparams["fit"])

        if mode.lower() == "iso_live_3d":
            pred = pred_3D_iso(model=unet,
                               sequence=seq,
                               image=image,
                               extra_boxes=N_extra,
                               min_coverage=None)
        else:
            # Predict on volume using model
            if n_classes > 1:
                pred = predict_3D_patches(model=unet,
                                          patches=seq,
                                          image=image,
                                          N_extra=N_extra)
            else:
                pred = predict_3D_patches_binary(model=unet,
                                                 patches=seq,
                                                 image_id=image_id,
                                                 N_extra=N_extra)

        if not predict_mode:
            # Get patches for the current image
            y = image.labels

            # Calculate dice score
            print("Mean dice: ", end="", flush=True)
            p = pred_to_class(pred, img_dims=3, has_batch_dim=False)
            dices = dice_all(y, p, n_classes=n_classes, ignore_zero=True)
            mean_dice = dices[~np.isnan(dices)].mean()
            print("Dices: ", dices)
            print("%s (n=%i)" % (mean_dice, len(dices)))

            # Add to results
            results[image_id] = [mean_dice]
            detailed_res[image_id] = dices

            # Overwrite with so-far results
            save_all_3D(results, detailed_res, out_dir)

            # Save results
            save_nii_files(p, image, nii_res_dir, save_only_pred)

        # Remove image from dictionary and image_pair_loader to free memory
        del all_images[image_id]
        image_pair_loader.images.remove(image)

    if not predict_mode:
        # Write final results
        save_all_3D(results, detailed_res, out_dir)