def circleDistance(self): """ **SUMMARY** Compare the hull mask to an ideal circle and count the number of pixels that deviate as a fraction of total area of the ideal circle. **RETURNS** The difference, as a percentage, between the hull of our blob and an idealized circle of our blob. """ w = self.mHullMask.width h = self.mHullMask.height idealcircle = Image((w, h)) radius = min(w, h) / 2 idealcircle.dl().circle((w / 2, h / 2), radius, filled=True, color=Color.WHITE) idealcircle = idealcircle.applyLayers() print self.mHullMask print idealcircle print self.mHullMask.width print self.mHullMask.height print idealcircle.width print idealcircle.height netdiff = (idealcircle - self.mHullMask) + (self.mHullMask - idealcircle) numblack, numwhite = netdiff.histogram(2) return float(numwhite) / (radius * radius * np.pi)
def circleDistance(self): """ **SUMMARY** Compare the hull mask to an ideal circle and count the number of pixels that deviate as a fraction of total area of the ideal circle. **RETURNS** The difference, as a percentage, between the hull of our blob and an idealized circle of our blob. """ w = self.mHullMask.width h = self.mHullMask.height idealcircle = Image((w,h)) radius = min(w,h) / 2 idealcircle.dl().circle((w/2, h/2), radius, filled= True, color=Color.WHITE) idealcircle = idealcircle.applyLayers() print self.mHullMask print idealcircle print self.mHullMask.width print self.mHullMask.height print idealcircle.width print idealcircle.height netdiff = (idealcircle - self.mHullMask) + (self.mHullMask - idealcircle) numblack, numwhite = netdiff.histogram(2) return float(numwhite) / (radius * radius * np.pi)
def circleDistance(self): """ Compare the hull mask to an ideal circle and count the number of pixels that deviate as a fraction of total area of the ideal circle """ idealcircle = Image((self.width(), self.height())) radius = min(self.width(), self.height()) / 2 idealcircle.dl().circle((self.width()/2, self.height()/2), radius, filled= True, color=Color.WHITE) idealcircle = idealcircle.applyLayers() netdiff = (idealcircle - self.mHullMask) + (self.mHullMask - idealcircle) numblack, numwhite = netdiff.histogram(2) return float(numwhite) / (radius * radius * np.pi)
def circleDistance(self): """ Compare the hull mask to an ideal circle and count the number of pixels that deviate as a fraction of total area of the ideal circle """ idealcircle = Image((self.width(), self.height())) radius = min(self.width(), self.height()) / 2 idealcircle.dl().circle((self.width() / 2, self.height() / 2), radius, filled=True, color=Color.WHITE) idealcircle = idealcircle.applyLayers() hullmask = Image(self.mHullMask) netdiff = (idealcircle - hullmask) + (hullmask - idealcircle) numblack, numwhite = netdiff.histogram(2) return float(numwhite) / (radius * radius * np.pi)