Пример #1
0
class DiffSegmentation(SegmentationBase):
    """
    This method will do image segmentation by looking at the difference between
    two frames.
    
    grayOnly - use only gray images.
    threshold - The value at which we consider the color difference to
    be significant enough to be foreground imagery.
    
    The general usage is
    
    >>> segmentor = DiffSegmentation()
    >>> cam = Camera()
    >>> while(1):
    >>>    segmentor.addImage(cam.getImage())
    >>>    if(segmentor.isReady()):
    >>>        img = segmentor.getSegmentedImage()

    """
    mError = False
    mLastImg = None
    mCurrImg = None
    mDiffImg = None
    mColorImg = None
    mGrayOnlyMode = True
    mThreshold = 10
    mBlobMaker = None

    def __init__(self, grayOnly=False, threshold=(10, 10, 10)):
        self.mGrayOnlyMode = grayOnly
        self.mThreshold = threshold
        self.mError = False
        self.mCurrImg = None
        self.mLastImg = None
        self.mDiffImg = None
        self.mColorImg = None
        self.mBlobMaker = BlobMaker()

    def addImage(self, img):
        """
        Add a single image to the segmentation algorithm
        """
        if (img is None):
            return
        if (self.mLastImg == None):
            if (self.mGrayOnlyMode):
                self.mLastImg = img.toGray()
                self.mDiffImg = Image(self.mLastImg.getEmpty(1))
                self.mCurrImg = None
            else:
                self.mLastImg = img
                self.mDiffImg = Image(self.mLastImg.getEmpty(3))
                self.mCurrImg = None
        else:
            if (self.mCurrImg is not None):  #catch the first step
                self.mLastImg = self.mCurrImg

            if (self.mGrayOnlyMode):
                self.mColorImg = img
                self.mCurrImg = img.toGray()
            else:
                self.mColorImg = img
                self.mCurrImg = img

            cv.AbsDiff(self.mCurrImg.getBitmap(), self.mLastImg.getBitmap(),
                       self.mDiffImg.getBitmap())

        return

    def isReady(self):
        """
        Returns true if the camera has a segmented image ready. 
        """
        if (self.mDiffImg is None):
            return False
        else:
            return True

    def isError(self):
        """
        Returns true if the segmentation system has detected an error.
        Eventually we'll consruct a syntax of errors so this becomes
        more expressive 
        """
        return self.mError  #need to make a generic error checker

    def resetError(self):
        """
        Clear the previous error. 
        """
        self.mError = False
        return

    def reset(self):
        """
        Perform a reset of the segmentation systems underlying data.
        """
        self.mCurrImg = None
        self.mLastImg = None
        self.mDiffImg = None

    def getRawImage(self):
        """
        Return the segmented image with white representing the foreground
        and black the background. 
        """
        return self.mDiffImg

    def getSegmentedImage(self, whiteFG=True):
        """
        Return the segmented image with white representing the foreground
        and black the background. 
        """
        retVal = None
        if (whiteFG):
            retVal = self.mDiffImg.binarize(thresh=self.mThreshold)
        else:
            retVal = self.mDiffImg.binarize(thresh=self.mThreshold).invert()
        return retVal

    def getSegmentedBlobs(self):
        """
        return the segmented blobs from the fg/bg image
        """
        retVal = []
        if (self.mColorImg is not None and self.mDiffImg is not None):
            retVal = self.mBlobMaker.extractFromBinary(
                self.mDiffImg.binarize(thresh=self.mThreshold), self.mColorImg)
        return retVal

    def __getstate__(self):
        mydict = self.__dict__.copy()
        self.mBlobMaker = None
        del mydict['mBlobMaker']
        return mydict

    def __setstate__(self, mydict):
        self.__dict__ = mydict
        self.mBlobMaker = BlobMaker()
Пример #2
0
class DiffSegmentation(SegmentationBase):
    """
    This method will do image segmentation by looking at the difference between
    two frames.

    grayOnly - use only gray images.
    threshold - The value at which we consider the color difference to
    be significant enough to be foreground imagery.

    The general usage is

    >>> segmentor = DiffSegmentation()
    >>> cam = Camera()
    >>> while(1):
    >>>    segmentor.addImage(cam.getImage())
    >>>    if(segmentor.isReady()):
    >>>        img = segmentor.getSegmentedImage()

    """
    mError = False
    mLastImg = None
    mCurrImg = None
    mDiffImg = None
    mColorImg = None
    mGrayOnlyMode = True
    mThreshold = 10
    mBlobMaker = None

    def __init__(self, grayOnly=False, threshold = (10,10,10) ):
        self.mGrayOnlyMode = grayOnly
        self.mThreshold = threshold
        self.mError = False
        self.mCurrImg = None
        self.mLastImg = None
        self.mDiffImg = None
        self.mColorImg = None
        self.mBlobMaker = BlobMaker()

    def addImage(self, img):
        """
        Add a single image to the segmentation algorithm
        """
        if( img is None ):
            return
        if( self.mLastImg == None ):
            if( self.mGrayOnlyMode ):
                self.mLastImg = img.toGray()
                self.mDiffImg = Image(self.mLastImg.getEmpty(1))
                self.mCurrImg = None
            else:
                self.mLastImg = img
                self.mDiffImg = Image(self.mLastImg.getEmpty(3))
                self.mCurrImg = None
        else:
            if( self.mCurrImg is not None ): #catch the first step
                self.mLastImg = self.mCurrImg

            if( self.mGrayOnlyMode ):
                self.mColorImg = img
                self.mCurrImg = img.toGray()
            else:
                self.mColorImg = img
                self.mCurrImg = img


            cv.AbsDiff(self.mCurrImg.getBitmap(),self.mLastImg.getBitmap(),self.mDiffImg.getBitmap())

        return


    def isReady(self):
        """
        Returns true if the camera has a segmented image ready.
        """
        if( self.mDiffImg is None ):
            return False
        else:
            return True


    def isError(self):
        """
        Returns true if the segmentation system has detected an error.
        Eventually we'll consruct a syntax of errors so this becomes
        more expressive
        """
        return self.mError #need to make a generic error checker

    def resetError(self):
        """
        Clear the previous error.
        """
        self.mError = False
        return

    def reset(self):
        """
        Perform a reset of the segmentation systems underlying data.
        """
        self.mCurrImg = None
        self.mLastImg = None
        self.mDiffImg = None

    def getRawImage(self):
        """
        Return the segmented image with white representing the foreground
        and black the background.
        """
        return self.mDiffImg

    def getSegmentedImage(self, whiteFG=True):
        """
        Return the segmented image with white representing the foreground
        and black the background.
        """
        retVal = None
        if( whiteFG ):
            retVal = self.mDiffImg.binarize(thresh=self.mThreshold)
        else:
            retVal = self.mDiffImg.binarize(thresh=self.mThreshold).invert()
        return retVal

    def getSegmentedBlobs(self):
        """
        return the segmented blobs from the fg/bg image
        """
        retVal = []
        if( self.mColorImg is not None and self.mDiffImg is not None ):
            retVal = self.mBlobMaker.extractFromBinary(self.mDiffImg.binarize(thresh=self.mThreshold),self.mColorImg)
        return retVal

    def __getstate__(self):
        mydict = self.__dict__.copy()
        self.mBlobMaker = None
        del mydict['mBlobMaker']
        return mydict

    def __setstate__(self, mydict):
        self.__dict__ = mydict
        self.mBlobMaker = BlobMaker()
class RunningSegmentation(SegmentationBase):
    """
    RunningSegmentation performs segmentation using a running background model.
    This model uses an accumulator which performs a running average of previous frames
    where:
    accumulator = ((1-alpha)input_image)+((alpha)accumulator)
    """

    mError = False
    mAlpha = 0.1
    mThresh = 10
    mModelImg = None
    mDiffImg = None
    mCurrImg = None
    mBlobMaker = None
    mGrayOnly = True
    mReady = False
    
    def __init__(self, alpha=0.7, thresh=(20,20,20)):
        """
        Create an running background difference.
        alpha - the update weighting where:
        accumulator = ((1-alpha)input_image)+((alpha)accumulator)
        
        threshold - the foreground background difference threshold. 
        """
        self.mError = False
        self.mReady = False
        self.mAlpha = alpha
        self.mThresh = thresh
        self.mModelImg = None
        self.mDiffImg = None
        self.mColorImg = None
        self.mBlobMaker = BlobMaker()
     
    def addImage(self, img):
        """
        Add a single image to the segmentation algorithm
        """
        if( img is None ):
            return
        
        self.mColorImg = img 
        if( self.mModelImg == None ):    
            self.mModelImg = Image(cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_32F, 3))          
            self.mDiffImg = Image(cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_32F, 3))           
        else:   
            # do the difference 
            cv.AbsDiff(self.mModelImg.getBitmap(),img.getFPMatrix(),self.mDiffImg.getBitmap())
            #update the model 
            cv.RunningAvg(img.getFPMatrix(),self.mModelImg.getBitmap(),self.mAlpha)
            self.mReady = True
        return
    

    def isReady(self):
        """
        Returns true if the camera has a segmented image ready. 
        """
        return self.mReady

    
    def isError(self):
        """
        Returns true if the segmentation system has detected an error.
        Eventually we'll consruct a syntax of errors so this becomes
        more expressive 
        """
        return self.mError #need to make a generic error checker
    
    def resetError(self):
        """
        Clear the previous error. 
        """
        self.mError = false
        return 

    def reset(self):
        """
        Perform a reset of the segmentation systems underlying data.
        """
        self.mModelImg = None
        self.mDiffImg = None
    
    def getRawImage(self):
        """
        Return the segmented image with white representing the foreground
        and black the background. 
        """
        return self._floatToInt(self.mDiffImg)
    
    def getSegmentedImage(self, whiteFG=True):
        """
        Return the segmented image with white representing the foreground
        and black the background. 
        """
        retVal = None
        img = self._floatToInt(self.mDiffImg)
        if( whiteFG ):
            retVal = img.binarize(thresh=self.mThresh)
        else:
            retVal = img.binarize(thresh=self.mThresh).invert()
        return retVal
    
    def getSegmentedBlobs(self):
        """
        return the segmented blobs from the fg/bg image
        """
        retVal = []
        if( self.mColorImg is not None and self.mDiffImg is not None ):

            eightBit = self._floatToInt(self.mDiffImg)
            retVal = self.mBlobMaker.extractFromBinary(eightBit.binarize(thresh=self.mThresh),self.mColorImg)
 
        return retVal
    
    
    def _floatToInt(self,input):
        """
        convert a 32bit floating point cv array to an int array
        """
        temp = cv.CreateImage((input.width,input.height), cv.IPL_DEPTH_8U, 3) 
        cv.Convert(input.getBitmap(),temp)
   
        return Image(temp)
        
    def __getstate__(self):
        mydict = self.__dict__.copy()
        self.mBlobMaker = None
        self.mModelImg = None
        self.mDiffImg = None
        del mydict['mBlobMaker']
        del mydict['mModelImg']
        del mydict['mDiffImg']
        return mydict
    
    def __setstate__(self, mydict):
        self.__dict__ = mydict
        self.mBlobMaker = BlobMaker()
class RunningSegmentation(SegmentationBase):
    """
    RunningSegmentation performs segmentation using a running background model.
    This model uses an accumulator which performs a running average of previous frames
    where:
    accumulator = ((1-alpha)input_image)+((alpha)accumulator)
    """

    mError = False
    mAlpha = 0.1
    mThresh = 10
    mModelImg = None
    mDiffImg = None
    mCurrImg = None
    mBlobMaker = None
    mGrayOnly = True
    mReady = False

    def __init__(self, alpha=0.7, thresh=(20,20,20)):
        """
        Create an running background difference.
        alpha - the update weighting where:
        accumulator = ((1-alpha)input_image)+((alpha)accumulator)

        threshold - the foreground background difference threshold.
        """
        self.mError = False
        self.mReady = False
        self.mAlpha = alpha
        self.mThresh = thresh
        self.mModelImg = None
        self.mDiffImg = None
        self.mColorImg = None
        self.mBlobMaker = BlobMaker()

    def addImage(self, img):
        """
        Add a single image to the segmentation algorithm
        """
        if( img is None ):
            return

        self.mColorImg = img
        if( self.mModelImg == None ):
            self.mModelImg = Image(cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_32F, 3))
            self.mDiffImg = Image(cv.CreateImage((img.width,img.height), cv.IPL_DEPTH_32F, 3))
        else:
            # do the difference
            cv.AbsDiff(self.mModelImg.getBitmap(),img.getFPMatrix(),self.mDiffImg.getBitmap())
            #update the model
            cv.RunningAvg(img.getFPMatrix(),self.mModelImg.getBitmap(),self.mAlpha)
            self.mReady = True
        return


    def isReady(self):
        """
        Returns true if the camera has a segmented image ready.
        """
        return self.mReady


    def isError(self):
        """
        Returns true if the segmentation system has detected an error.
        Eventually we'll consruct a syntax of errors so this becomes
        more expressive
        """
        return self.mError #need to make a generic error checker

    def resetError(self):
        """
        Clear the previous error.
        """
        self.mError = false
        return

    def reset(self):
        """
        Perform a reset of the segmentation systems underlying data.
        """
        self.mModelImg = None
        self.mDiffImg = None

    def getRawImage(self):
        """
        Return the segmented image with white representing the foreground
        and black the background.
        """
        return self._floatToInt(self.mDiffImg)

    def getSegmentedImage(self, whiteFG=True):
        """
        Return the segmented image with white representing the foreground
        and black the background.
        """
        retVal = None
        img = self._floatToInt(self.mDiffImg)
        if( whiteFG ):
            retVal = img.binarize(thresh=self.mThresh)
        else:
            retVal = img.binarize(thresh=self.mThresh).invert()
        return retVal

    def getSegmentedBlobs(self):
        """
        return the segmented blobs from the fg/bg image
        """
        retVal = []
        if( self.mColorImg is not None and self.mDiffImg is not None ):

            eightBit = self._floatToInt(self.mDiffImg)
            retVal = self.mBlobMaker.extractFromBinary(eightBit.binarize(thresh=self.mThresh),self.mColorImg)

        return retVal


    def _floatToInt(self,input):
        """
        convert a 32bit floating point cv array to an int array
        """
        temp = cv.CreateImage((input.width,input.height), cv.IPL_DEPTH_8U, 3)
        cv.Convert(input.getBitmap(),temp)

        return Image(temp)

    def __getstate__(self):
        mydict = self.__dict__.copy()
        self.mBlobMaker = None
        self.mModelImg = None
        self.mDiffImg = None
        del mydict['mBlobMaker']
        del mydict['mModelImg']
        del mydict['mDiffImg']
        return mydict

    def __setstate__(self, mydict):
        self.__dict__ = mydict
        self.mBlobMaker = BlobMaker()