def build_XB(X_train,y_train,X_cal,y_cal,X_test): cal_prob,test_prob = 0,0 for i in range(3): print("--Building and Training model %s" % i) seed = randrange(1,10000) model = XGBoostClassifier(n_iter=1000, max_features=0.3, max_depth=8, min_child_weight=10, gamma=0.0093,random_state=seed, learning_rate=0.05, l2_weight=0.1, max_samples=0.77, ) model = CalibratedClassifierCV(base_estimator=model,method='isotonic',cv=3).fit(X_train,y_train) print("Model %s training complete." % i) test_prob += model.predict_proba(X_test) test_prob = test_prob/3. return(cal_prob,test_prob)
def build_XB1(X_train,y_train,X_cal,y_cal,X_test): cal_prob,test_prob = 0,0 for i in range(5): print("--Building and Training model %s" % i) seed = randrange(1,10000) model = XGBoostClassifier(n_iter=500, max_features=0.3, max_depth=7, min_child_weight=10, gamma=0.0093,random_state=seed, learning_rate=0.2, l2_weight=0.1, max_samples=0.9 ) model = CalibratedClassifierCV(base_estimator=model,method='isotonic',cv=5).fit(X_train,y_train) print("Model %s training complete." % i) cal_prob += model.predict_proba(X_cal) test_prob += model.predict_proba(X_test) cal_prob = cal_prob/5. test_prob = test_prob/5. print("Average Model Loss: %0.4f" % of.logloss_mc(y_cal,cal_prob)) return(cal_prob,test_prob)