def abc(pewl, name=None, niter=None, npart=None, restart=None): if restart is not None: # read pool theta_init = np.loadtxt( os.path.join(abc_dir, 'theta.t%i.dat' % restart)) rho_init = np.loadtxt( os.path.join(abc_dir, 'rho.t%i.dat' % restart)) w_init = np.loadtxt( os.path.join(abc_dir, 'w.t%i.dat' % restart)) init_pool = abcpmc.PoolSpec(restart, None, None, theta_init, rho_init, w_init) npart = len(theta_init) print('%i particles' % npart) else: init_pool = None #--- inference with ABC-PMC below --- # prior prior = abcpmc.TophatPrior(prior_min, prior_max) # sampler abcpmc_sampler = abcpmc.Sampler( N=npart, # N_particles Y=x_obs, # data postfn=_sumstat_model_wrap, # simulator dist=_distance_metric_wrap, # distance metric pool=pewl, postfn_kwargs={'dem': dem}#, dist_kwargs={'method': 'L2', 'phi_err': phi_err} ) # threshold eps = abcpmc.ConstEps(niter, eps0) print('eps0', eps.eps) for pool in abcpmc_sampler.sample(prior, eps, pool=init_pool): eps_str = ", ".join(["{0:>.4f}".format(e) for e in pool.eps]) print("T: {0}, eps: [{1}], ratio: {2:>.4f}".format(pool.t, eps_str, pool.ratio)) for i, (mean, std) in enumerate(zip(*abcpmc.weighted_avg_and_std(pool.thetas, pool.ws, axis=0))): print(u" theta[{0}]: {1:>.4f} \u00B1 {2:>.4f}".format(i, mean,std)) print('dist', pool.dists) # write out theta, weights, and distances to file dustInfer.writeABC('eps', pool, abc_dir=abc_dir) dustInfer.writeABC('theta', pool, abc_dir=abc_dir) dustInfer.writeABC('w', pool, abc_dir=abc_dir) dustInfer.writeABC('rho', pool, abc_dir=abc_dir) # update epsilon based on median thresholding eps.eps = np.median(pool.dists, axis=0) print('eps%i' % pool.t, eps.eps) print('----------------------------------------') #if pool.ratio <0.2: break abcpmc_sampler.close() return None
def plot_pool(T, prior=None, dem='slab_calzetti', abc_dir=None): ''' plot ABC pool ''' # read pool theta_T = np.loadtxt(os.path.join(abc_dir, 'theta.t%i.dat' % T)) rho_T = np.loadtxt(os.path.join(abc_dir, 'rho.t%i.dat' % T)) w_T = np.loadtxt(os.path.join(abc_dir, 'w.t%i.dat' % T)) pool = abcpmc.PoolSpec(T, None, None, theta_T, rho_T, w_T) dustInfer.plotABC(pool, prior=prior, dem=dem, abc_dir=abc_dir) return None
def FixedTauABC(T, eps_input, fixtau='satellite', Npart=1000, prior_name='try0', observables=['fqz_multi'], abcrun=None, restart=False, t_restart=None, eps_restart=None, **sim_kwargs): ''' Run ABC-PMC analysis for central galaxy SFH model with *FIXED* quenching timescale Parameters ---------- T : (int) Number of iterations eps_input : (float) Starting epsilon threshold value N_part : (int) Number of particles prior_name : (string) String that specifies what prior to use. abcrun : (string) String that specifies abc run information ''' if isinstance(eps_input, list): if len(eps_input) != len(observables): raise ValueError if len(observables) > 1 and isinstance(eps_input, float): raise ValueError # output abc run details sfinherit_kwargs, abcrun_flag = MakeABCrun( abcrun=abcrun, Niter=T, Npart=Npart, prior_name=prior_name, eps_val=eps_input, restart=restart, **sim_kwargs) # Data data_sum = DataSummary(observables=observables) # Priors prior_min, prior_max = PriorRange(prior_name) prior = abcpmc.TophatPrior(prior_min, prior_max) # ABCPMC prior object def Simz(tt): # Simulator (forward model) gv_slope = tt[0] gv_offset = tt[1] fudge_slope = tt[2] fudge_offset = tt[3] sim_kwargs = sfinherit_kwargs.copy() sim_kwargs['sfr_prop']['gv'] = {'slope': gv_slope, 'fidmass': 10.5, 'offset': gv_offset} sim_kwargs['evol_prop']['fudge'] = {'slope': fudge_slope, 'fidmass': 10.5, 'offset': fudge_offset} sim_kwargs['evol_prop']['tau'] = {'name': fixtau} sim_output = SimSummary(observables=observables, **sim_kwargs) return sim_output theta_file = lambda pewl: ''.join([code_dir(), 'dat/pmc_abc/', 'CenQue_theta_t', str(pewl), '_', abcrun_flag, '.fixedtau.', fixtau, '.dat']) w_file = lambda pewl: ''.join([code_dir(), 'dat/pmc_abc/', 'CenQue_w_t', str(pewl), '_', abcrun_flag, '.fixedtau.', fixtau, '.dat']) dist_file = lambda pewl: ''.join([code_dir(), 'dat/pmc_abc/', 'CenQue_dist_t', str(pewl), '_', abcrun_flag, '.fixedtau.', fixtau, '.dat']) eps_file = ''.join([code_dir(), 'dat/pmc_abc/epsilon_', abcrun_flag, '.fixedtau.', fixtau, '.dat']) distfn = RhoFq if restart: if t_restart is None: raise ValueError last_thetas = np.loadtxt(theta_file(t_restart)) last_ws = np.loadtxt(w_file(t_restart)) last_dist = np.loadtxt(dist_file(t_restart)) init_pool = abcpmc.PoolSpec(t_restart, None, None, last_thetas, last_dist, last_ws) else: init_pool = None eps = abcpmc.ConstEps(T, eps_input) try: mpi_pool = mpi_util.MpiPool() abcpmc_sampler = abcpmc.Sampler( N=Npart, # N_particles Y=data_sum, # data postfn=Simz, # simulator dist=distfn, # distance function pool=mpi_pool) except AttributeError: abcpmc_sampler = abcpmc.Sampler( N=Npart, # N_particles Y=data_sum, # data postfn=Simz, # simulator dist=distfn) # distance function abcpmc_sampler.particle_proposal_cls = abcpmc.ParticleProposal pools = [] if init_pool is None: f = open(eps_file, "w") f.close() eps_str = '' for pool in abcpmc_sampler.sample(prior, eps, pool=init_pool): print '----------------------------------------' print 'eps ', pool.eps new_eps_str = str(pool.eps)+'\t'+str(pool.ratio)+'\n' if eps_str != new_eps_str: # if eps is different, open fiel and append f = open(eps_file, "a") eps_str = new_eps_str f.write(eps_str) f.close() print("T:{0},ratio: {1:>.4f}".format(pool.t, pool.ratio)) print eps(pool.t) # write theta, weights, and distances to file np.savetxt(theta_file(pool.t), pool.thetas, header='gv_slope, gv_offset, fudge_slope, fudge_offset') np.savetxt(w_file(pool.t), pool.ws) np.savetxt(dist_file(pool.t), pool.dists) # update epsilon based on median thresholding if len(observables) == 1: eps.eps = np.median(pool.dists) else: #print pool.dists print np.median(np.atleast_2d(pool.dists), axis = 0) eps.eps = np.median(np.atleast_2d(pool.dists), axis = 0) print '----------------------------------------' pools.append(pool) return pools