def get_spec(unum, separate=False, bandnames=None, bandlimits=None, bandnorms=None, retCoord=False, retST=False): ''' This function finds and pulls spectrum from the BDNYC database. Specifically, it looks for low-res, NIR SpeX Prism spectra. It can split and normalize it by the NIR bands (J, H, and K). *unum* String with the U-number of the target (e.g. U20268). *separate* Boolean, whether to split and normalize the spectrum by NIR bands (J, H, and K) *bandnames* List with strings containing the band names used to separate the spectrum (when separate=True) *bandlimits* Dictionary with keys *bandnames*, each key containing a list with float numbers specifying the bands limits (e.g. {'J': [0.8,1.4], 'H': [1.4,1.9], 'K': [1.9,2.4]} *bandnorms* Same structure as *bandlimits*, this time the float numbers specify the wavelength ranges used to normalize the bands (when separate=True) *retCoord* Boolean, whether to pull from the database the target coordinates *retST* Boolean, whether to pull from the database the target spectral type ''' import pickle import BDNYC import astrotools as at # 1. Initialize variables --------------------------------------- FOLDER_DB = '/Users/alejo/Dropbox/Python/Python_Database/' FILE_DB = 'BDNYCData.txt' # 2. Load database ---------------------------------------------- f = open(FOLDER_DB + FILE_DB,'rb') bdnyc = pickle.load(f) f.close() # 3. Check data available for target ---------------------------- availData = bdnyc.show_data(unum, dump=True) if availData is None: return # 4. Find Spex Prism data --------------------------------------- spexFound = False for row in availData: # Check that row is data row try: row[0] + 1 except TypeError: continue # Check that row is nir row try: loc = row.index('nir') except ValueError: continue # Check that row is low res row try: loc = row.index('low') except ValueError: continue # Check that row is Spex Prism row instr = row[3].lower() loc = instr.find('spex') if loc != -1: spexFound = True specIdx = row[0] break if not spexFound: print 'Spectrum for target not found.' return # 5. Fetch target parameters if requested ----------------------- params = [] if retCoord: ra = availData[4][1][0:5] dec = availData[5][1][0:6] coord = ra + dec coord = coord.replace(' ','') params.append(coord) if retST: st = availData[3][1] params.append(st) # 6. Get spectrum ----------------------------------------------- specRaw = bdnyc.get_data(unum, specIdx) # 7. Separate spectrum by bands --------------------------------- if separate: spec = [None] * 3 for bIdx, band in enumerate(bandnames): bLim = bandlimits[band][0] bMax = bandlimits[band][1] idx1 = np.where(specRaw[0,:] >= bLim) idx2 = np.where(specRaw[0,:] <= bMax) idx = np.intersect1d(idx1[0], idx2[0]) if len(idx) == 0: print 'Error in spectrum range.' return spec[bIdx] = specRaw[:,idx] # 8. Normalize spectrum ------------------------------------- specNorm = [None] * 3 for bIdx, band in enumerate(bandnames): specNorm[bIdx] = at.norm_spec(spec[bIdx], bandnorms[band])[0] if params != []: return specNorm, params else: return specNorm else: if params != []: return specRaw, params else: return specRaw
def main(spInput, grav=''): # 1. LOAD RELEVANT MODULES --------------------------------------------------------- import astrotools as at import asciidata import pyfits import matplotlib.pyplot as plt import numpy import sys import pdb # 2. SET UP VARIABLES -------------------------------------------------------------- FOLDER_ROOT = '/Users/alejo/KCData/' # Location of NIR and OPT folders FOLDER_OUT = 'Output/NOCN/' OPTNIR_KEYS = ['OPT', 'NIR'] BAND_NAME = ['NIR'] data = '' dataRaw = '' specFiles = '' spectraRaw = '' spectra = '' # For TXT objects file (updatable here directly) FILE_IN = 'nir_spex_prism_with_optical_12aug15.txt' # ASCII file w/ data HDR_FILE_IN = ('Ref','Designation','J','H','K','SpType','SpType_T','NIRFobs',\ 'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\ 'Young?','Dusty?','Blue?','Multiple?','Pec?') colNameRef = HDR_FILE_IN[0] colNameDesig = HDR_FILE_IN[1] colNameJ = HDR_FILE_IN[2] colNameK = HDR_FILE_IN[4] colNameJK = 'J-K' colNameType = HDR_FILE_IN[6] colNameYng = HDR_FILE_IN[14] colNameDust = HDR_FILE_IN[15] colNameBlue = HDR_FILE_IN[16] colNamePec = HDR_FILE_IN[18] # For TXT exclude-objects file EXCL_FILE = 'Exclude_Objs.txt' # ASCII file w/ U#s of objects to exclude # 3. READ DATA FROM INPUT FILES ---------------------------------------------------- NULL_CHAR = '' # Null character DELL_CHAR = '\t' # Delimiter character COMM_CHAR = '#' # Comment character # File with objects (query in Access) dataRaw = asciidata.open(FOLDER_ROOT + FILE_IN, NULL_CHAR, DELL_CHAR, COMM_CHAR) # Store data in a dictionary-type object data = {}.fromkeys(HDR_FILE_IN) for colIdx,colData in enumerate(dataRaw): data[HDR_FILE_IN[colIdx]] = colData.tonumpy() # 4. FORMAT SOME ASCII COLUMNS ----------------------------------------------------- # 4.1 Convert into unicode the Spectral Type-Text column uniSpType = [None] * len(data[colNameType]) for sIdx,sType in enumerate(data[colNameType]): uniSpType[sIdx] = sType.decode('utf-8') data[colNameType] = numpy.array(uniSpType) # 4.2 Calculate J-K Color And Add J-K Column data[colNameJK] = data[colNameJ] - data[colNameK] # 4.3 Format Designation Number from Designation Column for desigIdx,desig in enumerate(data[colNameDesig]): desig = ''.join(desig.split()) signType = '+' signPos = desig.find(signType) if signPos == -1: signType = '-' signPos = desig.find(signType) desigProper = desig[:4] + signType + desig[signPos+1:signPos+5] data[colNameDesig][desigIdx] = desigProper # 5. FILTER DATA BY USER INPUT IN spInput ------------------------------------------ # Find all spectra of same spectral type specIdx = [] for spIdx,spType in enumerate(data[colNameType]): if spType.upper().startswith(spInput.upper()): specIdx.append(spIdx) if not specIdx: print 'No target found for given input.' return spTypeInput = spInput.upper() # Sort relevant objects by JKmag value specIdx = numpy.array(specIdx) specSortIdx = data[colNameJK][specIdx].argsort() # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ---------------------------------------- spectraRaw = {}.fromkeys(OPTNIR_KEYS) # Used to store the raw data from fits files specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes for key in OPTNIR_KEYS: specFiles = [None] * len(specSortIdx) for sortIdx,specSort in enumerate(specSortIdx): tmpFullName = FOLDER_ROOT + key + '/' + data[key + 'file'][specIdx[specSort]] specFiles[sortIdx] = tmpFullName specFilesDict[key] = specFiles spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \ errors=True, verbose=False) # Clear out spectral data for objects missing either OPT or NIR data allNone = True for spIdx in range(0,len(spectraRaw['OPT'])): if spectraRaw['OPT'][spIdx] is None: spectraRaw['NIR'][spIdx] = None elif spectraRaw['NIR'][spIdx] is None: spectraRaw['OPT'][spIdx] = None else: allNone = False if allNone: print 'No spectral data found for objects of the given spectral type.' return # Convert spectraRaw contents into lists if only one spectral data for key in spectraRaw.keys(): if spectraRaw[key][0] is not None: if len(spectraRaw[key][0]) > 3: spectraRaw[key] = [spectraRaw[key],] # 7. GATHER OBJECTS' NAMES---------------------------------------------------------- # Filtered objects refs = [None] * len(specSortIdx) for idx,spIdx in enumerate(specSortIdx): tmpRef = data[colNameRef][specIdx[spIdx]] refs[idx] = str(int(tmpRef)) #8. SMOOTH SPECTRA ----------------------------------------------------------------- # Smooth the flux data to a reasonable resolution spectraS = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \ winWidth=0) # 9. SET LIMITS FOR BAND AND NORMALIZING SECTION------------------------------------ # Initialize dictionary to store limits BAND_LIMS = {}.fromkeys(BAND_NAME) for bandKey in BAND_NAME: BAND_LIMS[bandKey] = dict(lim = [None] * 2, limN = [None] * 2) # Set wl limits for band # Limits are in microns BAND_LIMS['NIR']['lim'][0] = 0.8 BAND_LIMS['NIR']['lim'][1] = 2.4 # Set wl limits for normalizing sections; this is the peak of the J band # Limits are in microns BAND_LIMS['NIR']['limN'][0] = 1.28 BAND_LIMS['NIR']['limN'][1] = 1.32 # 10. SELECT SPECTRAL DATA FOR NIR BAND--------------------------------------------- # Initialize variables spectraN = {}.fromkeys(BAND_NAME) # Gather reference numbers of objects objRef = data[colNameRef][specIdx[specSortIdx]] # Select band spectra = at.sel_band(spectraS, BAND_LIMS['NIR']['lim'], objRef) # Normalize band spectraN['NIR'] = at.norm_spec(spectra, BAND_LIMS['NIR']['limN']) # 11. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...)--------------- # Determine which targets to exclude using the "Exclude_Objs" file toExclude = [False] * len(refs) dataExcl = asciidata.open(FOLDER_ROOT + EXCL_FILE, NULL_CHAR, DELL_CHAR, COMM_CHAR) if len(dataExcl[0]) > 0: # Extract data from "Exclude_Objs" file excludeObjs = [None] * len(dataExcl[0]) for rowIdx, rowData in enumerate(dataExcl[0]): excludeObjs[rowIdx] = str(rowData) # Find intersection of exclude-obj list and filtered targets list setExclude = set(excludeObjs).intersection(set(refs)) # Create list with intersection targets if len(setExclude) != 0: for exclIdx in setExclude: tmpExclIdx = numpy.where(numpy.array(refs) == exclIdx) toExclude[tmpExclIdx[0]] = True # Determine which targets are blue blueObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): if data[colNameBlue][spIdx].upper() == 'YES': blueObjs[idx] = True # Determine which targets are dusty dustyObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): if data[colNameDust][spIdx].upper() == 'YES': dustyObjs[idx] = True # Determine which targets are peculiar pecObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): if data[colNamePec][spIdx].upper() == 'YES': pecObjs[idx] = True # Determine which plots are young objects youngObjs = [False] * len(refs) for idx,spIdx in enumerate(specSortIdx): if data[colNameYng][specIdx[spIdx]].upper() == 'YES': youngObjs[idx] = True # Determine which targets are GAMMA gammaObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode('utf-8') tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb3" if utcA == '\xce' and utcB == '\xb3': gammaObjs[idx] = True # Determine which targets are BETA betaObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode('utf-8') tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb2" if utcA == '\xce' and utcB == '\xb2': betaObjs[idx] = True # Determine which targets to include in plots (based on user input) # Consolidate plotting instructions grav = grav.upper() plotInstructions = ['exclude'] * len(refs) if grav == 'Y': # If plot request is Young, include gamma, beta & young targets for plotIdx in range(len(refs)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' elif grav == 'G': # If plot request is Gamma, include only gamma targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' elif grav == 'B': # If plot request is Beta, include only beta targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' elif grav == 'F': # If plot request is Field, include Field & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]: continue if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue plotInstructions[plotIdx] = 'field' else: # Otherwise, print Field, gamma, beta, young & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue if youngObjs[plotIdx]: plotInstructions[plotIdx] = 'young' else: plotInstructions[plotIdx] = 'field' # If all plot instructions are "exclude", then stop procedure allExcl = True for instr in plotInstructions: if instr != 'exclude': allExcl = False if allExcl: if not uniqueSpec: print 'No spectral data to plot based on your request.' return # 12. PLOT DATA -------------------------------------------------------------------- # Gather info on each object (for legend purposes) objInfo = [None] * len(refs) for posIdx,spIdx in enumerate(specIdx[specSortIdx]): tmpDesig = data[colNameDesig][spIdx] tmpJK = data[colNameJK][spIdx] tmpSPtype = data[colNameType][spIdx] tmpSPtype = tmpSPtype + ' ' * (5 - len(tmpSPtype)) # For alignment purposes objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' + '%.2f' %tmpJK) # Create Figure with Subplots figObj = plotspec(spectraN, BAND_NAME, BAND_LIMS, objInfo, spTypeInput, grav, \ plotInstructions) figObj.savefig(FOLDER_ROOT + FOLDER_OUT + spTypeInput + grav + '_fan.pdf', \ dpi=800)
# 3. GET SPECTRAL NIR STANDARDS & TEMPLATES ----------------------------------- spTypes = [] spectra = {}.fromkeys(BANDS) for band in BANDS: spectra[band] = [] for idxTp, spTp in enumerate(SPTYPES): # Fetch standard tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False) # Normalize standard for bdIdx, band in enumerate(BANDS): if idxTp in [1,2,3] and band == 'H': norm_lims = SPECIAL_H_NORM_LIM else: norm_lims = NORM_LIMS[band]['lim'] stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0] spectra[band].append(stdToPlot) #spectra[band].append(tmpStd[bdIdx]) # Fetch template from ascii files generated by make_templ.py in templates/ folder. for bdIdx, band in enumerate(BANDS): fileNm = spTp + band + '_' + GRAV + '.txt' templRaw = ad.read(FOLDER_OUT_TMPL + fileNm, delimiter='\t', \ format='no_header') templRawToPlot = np.array([templRaw.columns[i] for i in range(5)]) # Normalize when necessary if len(templRawToPlot) <= 3: if idxTp in [1,2,3] and band == 'H': norm_lims = SPECIAL_H_NORM_LIM else:
def main(spInput, grav='', plot=True, templ=False, std=False, lbl=False, normalize=True): # 1. LOAD RELEVANT MODULES ------------------------------------------------ #import asciidata import astrotools as at import numpy as np import sys import pdb import matplotlib.pyplot as plt from astropy.io import ascii # 2. SET UP VARIABLES ----------------------------------------------------- # Customizable variables <><><><><><><><><><><><><><><><><><><><><><><><><><><> FOLDER_ROOT = '/Users/alejo/Dropbox/Project_0/more data/' # Location of NIR and OPT folders FOLDER_IN = '/Users/alejo/Dropbox/Project_0/data/' # Location of input files FOLDER_OUT = '/Users/alejo/Dropbox/Project_0/plots/' # Location to save output figures FILE_IN = 'nir_spex_prism_with_optical.txt' # ASCII file w/ data # <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> # For TXT objects list file HDR_FILE_IN = ('Ref','Designation`','J','H','K','SpType','SpType_T','NIRFobs',\ 'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\ 'Young?','Dusty?','Blue?','Binary?','Pec?') # For TXT standards file FILE_IN_STD = 'NIR_Standards.txt' # ASCII file w/ standards HDR_FILE_IN_STD = ('Ref', 'Designation', 'NIR SpType', 'OPT SpType') colNameNIRS = HDR_FILE_IN_STD[2] colNameOPTS = HDR_FILE_IN_STD[3] # For TXT exclude-objects file EXCL_FILE = 'Exclude_Objs.txt' # ASCII file w/ unums of objects to exclude OPTNIR_KEYS = ['OPT', 'NIR'] BANDS_NAMES = ['K', 'H', 'J', 'OPT'] data = '' dataRaw = '' specFiles = '' spectraRaw = '' spectra = '' colNameRef = HDR_FILE_IN[0] colNameDesig = HDR_FILE_IN[1] colNameJ = HDR_FILE_IN[2] colNameK = HDR_FILE_IN[4] colNameJK = 'J-K' colNameType = HDR_FILE_IN[6] colNameNIRfile = HDR_FILE_IN[9] colNameYng = HDR_FILE_IN[14] colNameDust = HDR_FILE_IN[15] colNameBlue = HDR_FILE_IN[16] colNameBin = HDR_FILE_IN[17] colNamePec = HDR_FILE_IN[18] # Initialize dictionary to store NIR bands limits and normalizing sections BAND_LIMS = {}.fromkeys(BANDS_NAMES) for bandKey in BANDS_NAMES: BAND_LIMS[bandKey] = dict(lim=[None] * 2, limN=[None] * 2) # Set wavelength limits for bands # Limits are in microns BAND_LIMS['OPT']['lim'][0] = 0.65 BAND_LIMS['OPT']['lim'][1] = 0.90 BAND_LIMS['J']['lim'][0] = 0.8 BAND_LIMS['J']['lim'][1] = 1.4 BAND_LIMS['H']['lim'][0] = 1.4 BAND_LIMS['H']['lim'][1] = 1.9 BAND_LIMS['K']['lim'][0] = 1.9 BAND_LIMS['K']['lim'][1] = 2.4 # Set wl limits for normalizing sections # Limits are in microns BAND_LIMS['OPT']['limN'][0] = 0.66 BAND_LIMS['OPT']['limN'][1] = 0.89 BAND_LIMS['J']['limN'][0] = 0.87 BAND_LIMS['J']['limN'][1] = 1.39 BAND_LIMS['H']['limN'][0] = 1.41 BAND_LIMS['H']['limN'][1] = 1.89 BAND_LIMS['K']['limN'][0] = 1.91 BAND_LIMS['K']['limN'][1] = 2.39 # 3. READ DATA FROM INPUT FILES ------------------------------------------- DELL_CHAR = '\t' # Delimiter character COMM_CHAR = '#' # Comment character # File with objects (source: query in Access) dataRaw = ascii.read(FOLDER_IN + FILE_IN, format='no_header', \ delimiter=DELL_CHAR, comment=COMM_CHAR, data_start=1) # Store data in a dictionary-type object data = {}.fromkeys(HDR_FILE_IN) for colIdx, colname in enumerate(dataRaw.colnames): data[HDR_FILE_IN[colIdx]] = np.array(dataRaw[colname]) # File with standards (source: manually generated) dataRawS = ascii.read(FOLDER_IN + FILE_IN_STD, data_start=0) # Store standard data in a dictionary-type object dataS = {}.fromkeys(HDR_FILE_IN_STD) for colIdx, colname in enumerate(dataRawS.colnames): dataS[HDR_FILE_IN_STD[colIdx]] = np.array(dataRawS[colname]) # 4. FORMAT SOME ASCII COLUMNS -------------------------------------------- # 4.1 Convert into unicode the Spectral Type-Text column uniSpType = [None] * len(data[colNameType]) for sIdx, sType in enumerate(data[colNameType]): uniSpType[sIdx] = sType #.decode('utf-8') data[colNameType] = np.array(uniSpType) # 4.2 Calculate J-K Color data[colNameJK] = data[colNameJ] - data[colNameK] # 4.3 Format Designation Number in Designation Column # (From "XX XX XX.X +XX XX XX.X" to "XXXX+XXXX") for desigIdx, desig in enumerate(data[colNameDesig]): desig = ''.join(desig.split()) signType = '+' signPos = desig.find(signType) if signPos == -1: signType = '-' signPos = desig.find(signType) desigProper = desig[:4] + signType + desig[signPos + 1:signPos + 5] data[colNameDesig][desigIdx] = desigProper # 5. FILTER DATA BY USER INPUT IN spInput --------------------------------- uniqueSpec = False specIdx = [] if spInput.upper().startswith('L'): # If input is a spectral type, then find all spectra of same spectral type for spIdx, spType in enumerate(data[colNameType]): if spType.upper().startswith(spInput.upper()): specIdx.append(spIdx) if not specIdx: print('No targets found for given input.') if std is False: return spTypeInput = spInput.upper() else: # If input is one single spectrum, then find it for spIdx, spType in enumerate(data[colNameRef]): if str(spType) == spInput.upper(): specIdx.append(spIdx) if not specIdx: print('Requested target not found.') if std is False: return else: spTypeInput = data[colNameType][specIdx[0]][0:2] uniqueSpec = True # Find NIR standard target that matches user's spectral type stdIdx = [] for spIdx, spType in enumerate(dataS[colNameNIRS]): if spType.upper().startswith(spTypeInput): stdIdx.append(spIdx) # Add NIR standard target to list of filtered objects if not there already # (It may not be included in first filter because OPT SpT != NIR SpT) if not uniqueSpec: if dataS[colNameNIRS][stdIdx] != dataS[colNameOPTS][stdIdx]: for spIdx, spRef in enumerate(data[colNameRef]): if spRef == dataS[colNameRef][stdIdx][0]: if spIdx not in specIdx: specIdx.append(spIdx) # Sort relevant objects by JKmag value specIdx = np.array(specIdx) specSortIdx = data[colNameJK][specIdx].argsort() # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ------------------------------- spectraRaw = {}.fromkeys( OPTNIR_KEYS) # Used to store the raw data from fits files specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes for key in OPTNIR_KEYS: specFiles = [None] * len(specSortIdx) for sortIdx, specSort in enumerate(specSortIdx): if data[key + 'file'][specIdx[specSort]][-4:] == '.dat': continue if data[key + 'file'][specIdx[specSort]] == 'include': continue tmpFullName = FOLDER_ROOT + key + '/' + data[key \ + 'file'][specIdx[specSort]] specFiles[sortIdx] = tmpFullName specFilesDict[key] = specFiles spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \ errors=True, verbose=False) # Clear out spectral data for objects missing either OPT or NIR data allNone = True for spIdx in range(0, len(spectraRaw['OPT'])): if spectraRaw['OPT'][spIdx] is None: spectraRaw['NIR'][spIdx] = None elif spectraRaw['NIR'][spIdx] is None: spectraRaw['OPT'][spIdx] = None else: allNone = False if allNone: print('No spectral data found for objects of the given spectral type.') if std is False: return # Convert spectraRaw contents into lists if only one spectral data # (This reduces the dimensions of the object holding the data) for key in spectraRaw.keys(): if spectraRaw[key][0] is not None: if len(spectraRaw[key][0]) > 3: spectraRaw[key] = [ spectraRaw[key], ] # 7. GATHER OBJECTS' NAMES ------------------------------------------------ # Filtered objects refs = [None] * len(specSortIdx) for idx, spIdx in enumerate(specSortIdx): tmpRef = data[colNameRef][specIdx[spIdx]] refs[idx] = str(tmpRef) # Standard objects refsStd = [None] * len(dataS[colNameRef]) for idx, spIdx in enumerate(dataS[colNameRef]): tmpRef = dataS[colNameRef][idx] refsStd[idx] = str(tmpRef) # Gather reference numbers of objects objRef = data[colNameRef][specIdx[specSortIdx]] #8. SMOOTH SPECTRA -------------------------------------------------------- # Smooth the flux data to a reasonable resolution spectraS = {}.fromkeys(OPTNIR_KEYS) tmpSpOPT = at.smooth_spec(spectraRaw['OPT'], specFile=specFilesDict['OPT'], \ winWidth=10) tmpSpNIR = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \ winWidth=0) spectraS['OPT'] = tmpSpOPT spectraS['NIR'] = tmpSpNIR # 9. SELECT SPECTRAL DATA FOR THE DIFFERENT BANDS ------------------------- # Initialize variables spectra = {}.fromkeys(BANDS_NAMES) spectraN = {}.fromkeys(BANDS_NAMES) for bandKey in BANDS_NAMES: if bandKey == 'OPT': optNIR = 'OPT' else: optNIR = 'NIR' # Select band spectra[bandKey] = at.sel_band(spectraS[optNIR], BAND_LIMS[bandKey]['lim'], \ objRef) if spectra[bandKey] is None: break # Normalize band spectraN[bandKey], flagN = at.norm_spec(spectra[bandKey], \ BAND_LIMS[bandKey]['limN'], flag=True) if flagN: print('LIMITS for normalization changed!') if spectraN[bandKey] is None: break # 10. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...) ----- # Determine which targets to exclude # (source: file manually generated) toExclude = [False] * len(refs) # FORCE TO INCLUDE ALL TARGETS # dataExcl = ascii.read(FOLDER_IN + EXCL_FILE, data_start=0, delimiter=DELL_CHAR, \ # comment=COMM_CHAR, names=['ID']) # if len(dataExcl['ID']) > 0: # # Extract data from "Exclude_Objs" file # excludeObjs = np.array(dataExcl['ID'], dtype='string') # # # Find intersection of exclude-obj list and filtered targets list # setExclude = set(excludeObjs).intersection(set(refs)) # # # Create list with intersection targets # if len(setExclude) != 0: # for exclIdx in setExclude: # tmpExclIdx = np.where(np.array(refs) == exclIdx) # toExclude[tmpExclIdx[0]] = True # Determine which target is the NIR Standard object O_standard = [None] * 3 # Holds standard for output stdObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameRef][spIdx] == dataS[colNameRef][stdIdx]: stdObjs[idx] = True if normalize: O_standard[0] = spectraN['J'][idx] O_standard[1] = spectraN['H'][idx] O_standard[2] = spectraN['K'][idx] else: O_standard[0] = spectra['J'][idx] O_standard[1] = spectra['H'][idx] O_standard[2] = spectra['K'][idx] # Determine which targets are blue blueObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameBlue][spIdx].upper() == 'YES': blueObjs[idx] = True # Determine which targets are dusty dustyObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameDust][spIdx].upper() == 'YES': dustyObjs[idx] = True # Determine which targets are binary binObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameBin][spIdx].upper() == 'YES': binObjs[idx] = True # Determine which targets are peculiar pecObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNamePec][spIdx].upper() == 'YES': pecObjs[idx] = True # Determine which targets are young youngObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameYng][spIdx].upper() == 'YES': youngObjs[idx] = True # Determine which targets are GAMMA gammaObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode('utf-8') tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb3" if utcA == '\xce' and utcB == '\xb3': gammaObjs[idx] = True # Determine which targets are BETA betaObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode('utf-8') tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb2" if utcA == '\xce' and utcB == '\xb2': betaObjs[idx] = True # Determine which targets to include in plots (based on user input) # Consolidate plotting & template-flux instructions grav = grav.upper() plotInstructions = ['exclude'] * len(refs) templInstructions = [False] * len(refs) if grav == 'Y': # If plot request is Young, include gamma, beta & young targets for plotIdx in range(len(refs)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \ or binObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' templInstructions[plotIdx] = True elif grav == 'G': # If plot request is Gamma, include only gamma targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \ or binObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' templInstructions[plotIdx] = True elif grav == 'B': # If plot request is Beta, include only beta targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \ or binObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' templInstructions[plotIdx] = True elif grav == 'F': # If plot request is Field, include Field & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]: continue #if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \ # or binObjs[plotIdx]: # continue if stdObjs[plotIdx]: plotInstructions[plotIdx] = 'standard' else: plotInstructions[plotIdx] = 'field' templInstructions[plotIdx] = True else: # Otherwise, print Field, gamma, beta, young & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] \ or binObjs[plotIdx]: continue if youngObjs[plotIdx]: plotInstructions[plotIdx] = 'young' elif stdObjs[plotIdx]: plotInstructions[plotIdx] = 'standard' else: plotInstructions[plotIdx] = 'field' templInstructions[plotIdx] = True # If all plot instructions are "exclude", then stop procedure (for spectral types) allExcl = True for instr in plotInstructions: if instr != 'exclude': allExcl = False if allExcl: if std: return O_standard if not uniqueSpec: print('No spectral data to plot based on your request.') return # 11. CALCULATE TEMPLATE SPECTRA FOR SELECTED SET OF SPECTRA ----------------------- # Gather spectra to use to calculate template spectrum # if not allExcl: # O_template = [None] * 3 # Holds calculated template for output # templCalculated = False # for bandIdx, bandKey in enumerate(BANDS_NAMES): # if bandKey == 'OPT': # continue # # templSpecs = [] # for spIdx, spex in enumerate(spectraN[bandKey]): # if templInstructions[spIdx]: # # Check that spectrum exists # if spex is None: # templInstructions[spIdx] = False # continue # # if bandKey == 'OPT': # templSpecs.append(spex) # else: # # Check that spectrum comes with error values (NIR bands only) # notNansBool = np.isfinite(spex[2]) # notNans = np.any(notNansBool) # if notNans: # templSpecs.append(spex) # else: # print(str(objRef[spIdx]) + ' excluded from template') # # # Calculate template spectrum # if len(templSpecs) > 1: # template = at.mean_comb(templSpecs) # templCalculated = True # # # Append template to list of spectra to plot in the next step # spectraN[bandKey].append(template) # # Append template to output object # if bandIdx == 0: # tempIdx = 2 # elif bandIdx == 2: # tempIdx = 0 # else: # tempIdx = 1 # O_template[tempIdx] = template # # if templCalculated: # refs.append('template') # plotInstructions.append('template') # else: # O_template = None # 12. PLOT DATA ----------------------------------------------------------- if lbl or plot: # Gather info on each target objInfo = [None] * len(refs) for posIdx, spIdx in enumerate(specIdx[specSortIdx]): tmpDesig = data[colNameDesig][spIdx] tmpJK = data[colNameJK][spIdx] tmpSPtype = data[colNameType][spIdx] tmpSPtype = tmpSPtype + ' ' * (5 - len(tmpSPtype) ) # For alignment purposes objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' + '%.2f' % tmpJK) if objInfo[-1] is None: objInfo[-1] = 'template' if plot: # Create Figure with Subplots and Annotations tmpspectraN = {key: spectraN[key] for key in ['J', 'H', 'K']} tmpBANDS_NAMES = BANDS_NAMES[:-1] tmpBAND_LIMS = {key: BAND_LIMS[key] for key in ['J', 'H', 'K']} figObj = plotspec(tmpspectraN, tmpBANDS_NAMES, tmpBAND_LIMS, objInfo, \ spTypeInput, grav, plotInstructions) figObj.savefig(FOLDER_OUT + spTypeInput + grav + '.pdf', dpi=600) # 13. DETERMINE OUTPUT ---------------------------------------------------- if templ: if std: return O_template, O_standard else: return O_template elif std: return O_standard else: if lbl: return spectraN, objInfo else: return spectraN
if spTp in SPSTDNM: if spTp == 'L2': isp = 0 elif spTp == 'L5': isp = 1 else: isp = 2 tmpspec = at.read_spec('../more data/NIR/' + SPSTD[isp], errors=False, \ atomicron=True, negtonan=True) for band in BANDS: tmpband = at.sel_band(tmpspec, BAND_LIMS[band]['lim']) if idxTp in [1,2,3] and band == 'H': norm_lims = SPECIAL_H_NORM_LIM else: norm_lims = NORM_LIMS[band]['lim'] stdToPlot = at.norm_spec(tmpband, norm_lims)[0] spectra[band].append(stdToPlot) spTypes.append(spTp) # # Fetch standard # tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False) # # Normalize standard # for bdIdx, band in enumerate(BANDS): # if idxTp in [1,2,3] and band == 'H': # norm_lims = SPECIAL_H_NORM_LIM # else: # norm_lims = NORM_LIMS[band]['lim'] # stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0] # spectra[band].append(stdToPlot) # #spectra[band].append(tmpStd[bdIdx])
def main(spInput, grav=''): # 1. LOAD RELEVANT MODULES --------------------------------------------------------- import astrotools as at from astropy.io import ascii import matplotlib.pyplot as plt import numpy as np import sys import pdb # 2. SET UP VARIABLES -------------------------------------------------------------- # Customizable variables <><><><><><><><><><><><><><><><><><><><><><><><><><><> FOLDER_ROOT = '/Users/alejo/Dropbox/Project_0/more data/' # Location of NIR and OPT folders FOLDER_IN = '/Users/alejo/Dropbox/Project_0/data/' # Location of input files FOLDER_OUT = '/Users/alejo/Dropbox/Project_0/plots/' # Location to save output figures FILE_IN = 'nir_spex_prism_with_optical.txt' # ASCII file w/ data # <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> # For TXT objects file (updatable here directly) HDR_FILE_IN = ('Ref','Designation`','J','H','K','SpType','SpType_T','NIRFobs',\ 'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\ 'Young?','Dusty?','Blue?','Binary?','Pec?') OPTNIR_KEYS = ['OPT', 'NIR'] BAND_NAME = ['NIR'] data = '' dataRaw = '' specFiles = '' spectraRaw = '' spectra = '' colNameRef = HDR_FILE_IN[0] colNameDesig = HDR_FILE_IN[1] colNameJ = HDR_FILE_IN[2] colNameK = HDR_FILE_IN[4] colNameJK = 'J-K' colNameType = HDR_FILE_IN[6] colNameNIRfile = HDR_FILE_IN[9] colNameYng = HDR_FILE_IN[14] colNameDust = HDR_FILE_IN[15] colNameBlue = HDR_FILE_IN[16] colNameBin = HDR_FILE_IN[17] colNamePec = HDR_FILE_IN[18] # Initialize dictionary to store NIR bands limits and normalizing sections BAND_LIMS = {}.fromkeys(BAND_NAME) for bandKey in BAND_NAME: BAND_LIMS[bandKey] = dict(lim = [None] * 2, limN = [None] * 2) # Set wl limits for band # Limits are in microns BAND_LIMS['NIR']['lim'][0] = 0.8 BAND_LIMS['NIR']['lim'][1] = 2.4 # Set wl limits for normalizing sections; this is the peak of the J band # Limits are in microns BAND_LIMS['NIR']['limN'][0] = 1.28 BAND_LIMS['NIR']['limN'][1] = 1.32 # 3. READ DATA FROM INPUT FILES ---------------------------------------------------- DELL_CHAR = '\t' # Delimiter character COMM_CHAR = '#' # Comment character # File with objects (source: query in Access) dataRaw = ascii.read(FOLDER_IN + FILE_IN, format='no_header', \ delimiter=DELL_CHAR, comment=COMM_CHAR, data_start=1) # Store data in a dictionary-type object data = {}.fromkeys(HDR_FILE_IN) for colIdx,colname in enumerate(dataRaw.colnames): data[HDR_FILE_IN[colIdx]] = np.array(dataRaw[colname]) # 4. FORMAT SOME ASCII COLUMNS ----------------------------------------------------- # 4.1 Convert into unicode the Spectral Type-Text column uniSpType = [None] * len(data[colNameType]) for sIdx,sType in enumerate(data[colNameType]): uniSpType[sIdx] = sType#.decode('utf-8') data[colNameType] = np.array(uniSpType) # 4.2 Calculate J-K Color data[colNameJK] = data[colNameJ] - data[colNameK] # 4.3 Format Designation Number from Designation Column for desigIdx,desig in enumerate(data[colNameDesig]): desig = ''.join(desig.split()) signType = '+' signPos = desig.find(signType) if signPos == -1: signType = '-' signPos = desig.find(signType) desigProper = desig[:4] + signType + desig[signPos+1:signPos+5] data[colNameDesig][desigIdx] = desigProper # 5. FILTER DATA BY USER INPUT IN spInput ------------------------------------------ # Find all spectra of same spectral type specIdx = [] for spIdx,spType in enumerate(data[colNameType]): if spType.upper().startswith(spInput.upper()): specIdx.append(spIdx) if not specIdx: print('No target found for given input.') return spTypeInput = spInput.upper() # Sort relevant objects by JKmag value specIdx = np.array(specIdx) specSortIdx = data[colNameJK][specIdx].argsort() # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ---------------------------------------- spectraRaw = {}.fromkeys(OPTNIR_KEYS) # Used to store the raw data from fits files specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes for key in OPTNIR_KEYS: specFiles = [None] * len(specSortIdx) for sortIdx,specSort in enumerate(specSortIdx): if data[key + 'file'][specIdx[specSort]][-4:] == '.dat': continue if data[key + 'file'][specIdx[specSort]] == 'include': continue tmpFullName = FOLDER_ROOT + key + '/' + data[key \ + 'file'][specIdx[specSort]] specFiles[sortIdx] = tmpFullName specFilesDict[key] = specFiles spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \ errors=True, verbose=False) # Clear out spectral data for objects missing either OPT or NIR data allNone = True for spIdx in range(0,len(spectraRaw['OPT'])): if spectraRaw['OPT'][spIdx] is None: spectraRaw['NIR'][spIdx] = None elif spectraRaw['NIR'][spIdx] is None: spectraRaw['OPT'][spIdx] = None else: allNone = False if allNone: print('No spectral data found for objects of the given spectral type.') return # Convert spectraRaw contents into lists if only one spectral data for key in spectraRaw.keys(): if spectraRaw[key][0] is not None: if len(spectraRaw[key][0]) > 3: spectraRaw[key] = [spectraRaw[key],] # 7. GATHER OBJECTS' NAMES --------------------------------------------------------- # Filtered objects refs = [None] * len(specSortIdx) for idx,spIdx in enumerate(specSortIdx): tmpRef = data[colNameRef][specIdx[spIdx]] refs[idx] = str(int(tmpRef)) #8. SMOOTH SPECTRA ----------------------------------------------------------------- # Smooth the flux data to a reasonable resolution spectraS = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \ winWidth=0) # 9. SELECT SPECTRAL DATA FOR NIR BAND -------------------------------------------- # Initialize variables spectraN = {}.fromkeys(BAND_NAME) # Gather reference numbers of objects objRef = data[colNameRef][specIdx[specSortIdx]] # Select band spectra = at.sel_band(spectraS, BAND_LIMS['NIR']['lim'], objRef) # Normalize band spectraN['NIR'] = at.norm_spec(spectra, BAND_LIMS['NIR']['limN']) # 11. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...) -------------- # Force to include all targerts toExclude = [False] * len(refs) # Determine which targets are blue blueObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): if data[colNameBlue][spIdx].upper() == 'YES': blueObjs[idx] = True # Determine which targets are dusty dustyObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): if data[colNameDust][spIdx].upper() == 'YES': dustyObjs[idx] = True # Determine which targets are peculiar pecObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): if data[colNamePec][spIdx].upper() == 'YES': pecObjs[idx] = True # Determine which plots are young objects youngObjs = [False] * len(refs) for idx,spIdx in enumerate(specSortIdx): if data[colNameYng][specIdx[spIdx]].upper() == 'YES': youngObjs[idx] = True # Determine which targets are GAMMA gammaObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode('utf-8') tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb3" if utcA == '\xce' and utcB == '\xb3': gammaObjs[idx] = True # Determine which targets are BETA betaObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode('utf-8') tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb2" if utcA == '\xce' and utcB == '\xb2': betaObjs[idx] = True # Determine which targets to include in plots (based on user input) # Consolidate plotting instructions grav = grav.upper() plotInstructions = ['exclude'] * len(refs) if grav == 'Y': # If plot request is Young, include gamma, beta & young targets for plotIdx in range(len(refs)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' elif grav == 'G': # If plot request is Gamma, include only gamma targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' elif grav == 'B': # If plot request is Beta, include only beta targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue plotInstructions[plotIdx] = 'young' elif grav == 'F': # If plot request is Field, include Field & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]: continue plotInstructions[plotIdx] = 'field' else: # Otherwise, print Field, gamma, beta, young & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx]: continue if youngObjs[plotIdx]: plotInstructions[plotIdx] = 'young' else: plotInstructions[plotIdx] = 'field' # If all plot instructions are "exclude", then stop procedure allExcl = True for instr in plotInstructions: if instr != 'exclude': allExcl = False if allExcl: if not uniqueSpec: print('No spectral data to plot based on your request.') return # 11. PLOT DATA -------------------------------------------------------------------- # Gather info on each object (for legend purposes) objInfo = [None] * len(refs) for posIdx,spIdx in enumerate(specIdx[specSortIdx]): tmpDesig = data[colNameDesig][spIdx] tmpJK = data[colNameJK][spIdx] tmpSPtype = data[colNameType][spIdx] tmpSPtype = tmpSPtype + ' ' * (5 - len(tmpSPtype)) # For alignment purposes objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' + '%.2f' %tmpJK) # Create Figure with Subplots figObj = plotspec(spectraN, BAND_NAME, BAND_LIMS, objInfo, spTypeInput, grav, \ plotInstructions) figObj.savefig(FOLDER_OUT + spTypeInput + grav + '_fan.pdf', \ dpi=800)
def main(spInput, grav='', plot=True, templ=False, std=False, excluded=False, normalize=True): # 1. LOAD RELEVANT MODULES ------------------------------------------------ from astropy.io import ascii import astrotools as at import numpy as np import sys import os import pdb import matplotlib.pyplot as plt # 2. SET UP VARIABLES ----------------------------------------------------- # Customizable variables <><><><><><><><><><><><><><><><><><><><><><><><><><><> FOLDER_ROOT = '/Users/alejo/Dropbox/Project_0/more data/' # Location of NIR and OPT folders FOLDER_IN = '/Users/alejo/Dropbox/Project_0/data/' # Location of input files FOLDER_OUT = '/Users/alejo/Dropbox/Project_0/plots/' # Location to save output figures FILE_IN = 'nir_spex_prism_with_optical.txt' # ASCII file w/ data # <><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> # For TXT objects file (updatable here directly) HDR_FILE_IN = ('Ref','Designation`','J','H','K','SpType','SpType_T','NIRFobs',\ 'NIRFtel','NIRfile','OPTobs','OPTtel','OPTinst','OPTfile',\ 'Young?','Dusty?','Blue?','Binary?','Pec?') # For TXT standards file FILE_IN_STD = 'NIR_Standards_K10.txt' # ASCII file w/ standards HDR_FILE_IN_STD = ('Ref','Designation','NIR SpType','OPT SpType') colNameNIRS = HDR_FILE_IN_STD[2] colNameOPTS = HDR_FILE_IN_STD[3] OPTNIR_KEYS = ['OPT','NIR'] BANDS_NAMES = ['K','H','J','OPT'] data = '' dataRaw = '' specFiles = '' spectraRaw = '' spectra = '' colNameRef = HDR_FILE_IN[0] colNameDesig = HDR_FILE_IN[1] colNameJ = HDR_FILE_IN[2] colNameK = HDR_FILE_IN[4] colNameJK = 'J-K' colNameType = HDR_FILE_IN[6] colNameNIRfile = HDR_FILE_IN[9] colNameYng = HDR_FILE_IN[14] colNameDust = HDR_FILE_IN[15] colNameBlue = HDR_FILE_IN[16] colNameBin = HDR_FILE_IN[17] colNamePec = HDR_FILE_IN[18] # Initialize dictionary to store NIR bands limits and normalizing sections BAND_LIMS = {}.fromkeys(BANDS_NAMES) for bandKey in BANDS_NAMES: BAND_LIMS[bandKey] = dict(lim = [None] * 2, limN = [None] * 2) # Set wavelength limits for bands # Limits are in microns BAND_LIMS['OPT']['lim'][0] = 0.65 BAND_LIMS['OPT']['lim'][1] = 0.90 BAND_LIMS['J' ]['lim'][0] = 0.8 BAND_LIMS['J' ]['lim'][1] = 1.4 BAND_LIMS['H' ]['lim'][0] = 1.4 BAND_LIMS['H' ]['lim'][1] = 1.9 BAND_LIMS['K' ]['lim'][0] = 1.9 BAND_LIMS['K' ]['lim'][1] = 2.4 # Set wl limits for normalizing sections # Limits are in microns BAND_LIMS['OPT']['limN'][0] = 0.66 BAND_LIMS['OPT']['limN'][1] = 0.89 BAND_LIMS['J' ]['limN'][0] = 0.87 BAND_LIMS['J' ]['limN'][1] = 1.39 BAND_LIMS['H' ]['limN'][0] = 1.41 BAND_LIMS['H' ]['limN'][1] = 1.89 BAND_LIMS['K' ]['limN'][0] = 1.91 BAND_LIMS['K' ]['limN'][1] = 2.39 # 3. READ DATA FROM MAIN INPUT FILE --------------------------------------- DELL_CHAR = '\t' # Delimiter character COMM_CHAR = '#' # Comment character # File with ALL objects (source: query in Access) dataRaw = ascii.read(FOLDER_IN + FILE_IN, format='no_header', \ delimiter=DELL_CHAR, comment=COMM_CHAR, data_start=1) # Store data in a dictionary-type object data = {}.fromkeys(HDR_FILE_IN) for colIdx,colname in enumerate(dataRaw.colnames): data[HDR_FILE_IN[colIdx]] = np.array(dataRaw[colname]) # File with standards (source: manually generated) dataRawS = ascii.read(FOLDER_IN + FILE_IN_STD, data_start=0) # Store standard data in a dictionary-type object dataS = {}.fromkeys(HDR_FILE_IN_STD) for colIdx,colname in enumerate(dataRawS.colnames): dataS[HDR_FILE_IN_STD[colIdx]] = np.array(dataRawS[colname]) # 4. FORMAT SOME ASCII COLUMNS -------------------------------------------- # 4.1 Convert into unicode the Spectral Type-Text column uniSpType = [None] * len(data[colNameType]) for sIdx,sType in enumerate(data[colNameType]): uniSpType[sIdx] = sType #.decode('utf-8') data[colNameType] = np.array(uniSpType) # 4.2 Calculate J-K Color data[colNameJK] = data[colNameJ] - data[colNameK] # 4.3 Format Designation Number from Designation Column # (From "XX XX XX.X +XX XX XX.X" to "XXXX+XXXX") for desigIdx,desig in enumerate(data[colNameDesig]): desig = ''.join(desig.split()) signType = '+' signPos = desig.find(signType) if signPos == -1: signType = '-' signPos = desig.find(signType) desigProper = desig[:4] + signType + desig[signPos+1:signPos+5] data[colNameDesig][desigIdx] = desigProper # 5. FILTER DATA BY USER INPUT IN spInput --------------------------------- specIdx = [] # Find all spectra of same spectral type for spIdx,spType in enumerate(data[colNameType]): if spType.upper().startswith(spInput.upper()): specIdx.append(spIdx) if not specIdx: print('No targets found for given input.') if std is False: return spTypeInput = spInput.upper() # Find NIR standard target that matches user's spectral type stdIdx = [] for spIdx,spType in enumerate(dataS[colNameNIRS]): if spType.upper().startswith(spTypeInput): stdIdx.append(spIdx) # Add NIR standard target to list of filtered objects if not there already # (It may not be included in first filter because OPT SpT != NIR SpT) if dataS[colNameNIRS][stdIdx] != dataS[colNameOPTS][stdIdx]: for spIdx,spRef in enumerate(data[colNameRef]): if spRef == int(dataS[colNameRef][stdIdx][0]): if spIdx not in specIdx: specIdx.append(spIdx) # Sort relevant objects by JKmag value specIdx = np.array(specIdx) specSortIdx = data[colNameJK][specIdx].argsort() # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ------------------------------- spectraRaw = {}.fromkeys(OPTNIR_KEYS) # Used to store the raw data from fits files specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes for key in OPTNIR_KEYS: specFiles = [None] * len(specSortIdx) for sortIdx,specSort in enumerate(specSortIdx): if data[key + 'file'][specIdx[specSort]][-4:] == '.dat': continue if data[key + 'file'][specIdx[specSort]] == 'include': continue tmpFullName = FOLDER_ROOT + key + '/' + data[key + 'file'][specIdx[specSort]] specFiles[sortIdx] = tmpFullName specFilesDict[key] = specFiles spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, \ errors=True, verbose=False) # Clear out spectral data for objects missing either OPT or NIR data allNone = True for spIdx in range(0,len(spectraRaw['OPT'])): if spectraRaw['OPT'][spIdx] is None: spectraRaw['NIR'][spIdx] = None elif spectraRaw['NIR'][spIdx] is None: spectraRaw['OPT'][spIdx] = None else: allNone = False if allNone: print('No spectral data found for objects of the given spectral type.') if std is False: return # Convert spectraRaw contents into lists if only one spectral data # (This reduces the dimensions of the object holding the data) for key in spectraRaw.keys(): if spectraRaw[key][0] is not None: if len(spectraRaw[key][0]) > 3: spectraRaw[key] = [spectraRaw[key],] # 7. GATHER OBJECTS' NAMES ------------------------------------------------ # Filtered objects refs = [None] * len(specSortIdx) NIRfilenames = [None] * len(specSortIdx) for idx,spIdx in enumerate(specSortIdx): tmpRef = data[colNameRef][specIdx[spIdx]] refs[idx] = str(int(tmpRef)) NIRfilenames[idx] = data[colNameNIRfile][specIdx[spIdx]] # Standard objects refsStd = [None] * len(dataS[colNameRef]) for idx,spIdx in enumerate(dataS[colNameRef]): tmpRef = dataS[colNameRef][idx] refsStd[idx] = str(int(tmpRef)) # Gather reference numbers of objects objRef = data[colNameRef][specIdx[specSortIdx]] # 8. SMOOTH SPECTRA ------------------------------------------------------- # Smooth the flux data to a reasonable resolution spectraS = {}.fromkeys(OPTNIR_KEYS) tmpSpOPT = at.smooth_spec(spectraRaw['OPT'], specFile=specFilesDict['OPT'], \ winWidth=10) tmpSpNIR = at.smooth_spec(spectraRaw['NIR'], specFile=specFilesDict['NIR'], \ winWidth=0) spectraS['OPT'] = tmpSpOPT spectraS['NIR'] = tmpSpNIR # 9. SELECT SPECTRAL DATA FOR THE DIFFERENT BANDS ------------------------- # Initialize variables spectra = {}.fromkeys(BANDS_NAMES) spectraN = {}.fromkeys(BANDS_NAMES) for bandKey in BANDS_NAMES: if bandKey == 'OPT': optNIR = 'OPT' else: optNIR = 'NIR' # Select band spectra[bandKey] = at.sel_band(spectraS[optNIR], BAND_LIMS[bandKey]['lim'], \ objRef) if spectra[bandKey] is None: break # Normalize band spectraN[bandKey], flagN = at.norm_spec(spectra[bandKey], \ BAND_LIMS[bandKey]['limN'], flag=True) if flagN: print(bandKey + ' LIMITS for normalization changed!') if spectraN[bandKey] is None: break # 10. CHARACTERIZE TARGETS (i.e. identify young, field, and excluded) ----- grav = grav.lower() toInclude = [False] * len(refs) # toInclude_LG = [False] * len(refs) toExclude = [False] * len(refs) dataIncl = [] # dataIncl_LG = [] dataExcl = [] # 10.1 Extract NIR file names from "keepers" file fileslist = os.listdir(FOLDER_IN) inclFile = '' for fl in fileslist: if fl.find('keepers') == -1 or fl.find(spInput) == -1: continue tmpfl = fl.split('_') if len(tmpfl[1]) == 2 and grav == 'f': inclFile = fl break elif len(tmpfl[1]) == 3: if tmpfl[1][-1] == grav: inclFile = fl break if inclFile != '': dataIncl = ascii.read(FOLDER_IN + inclFile, format='no_header', \ delimiter=DELL_CHAR, comment=COMM_CHAR) if len(dataIncl) > 0: includeObjs = np.array(dataIncl['col1']).astype(object) includeObjs = includeObjs + np.repeat('.fits', len(dataIncl)) # Find intersection of include-obj list and filtered targets list setInclude = set(includeObjs).intersection(set(NIRfilenames)) # Create list with intersection targets if len(setInclude) != 0: for inclIdx in setInclude: tmpInclIdx = np.where(np.array(NIRfilenames) == inclIdx)[0] toInclude[tmpInclIdx] = True # 10.2 Extract NIR file names from "rejects" file exclFile = '' for fl in fileslist: if fl.find('rejects') == -1 or fl.find(spInput) == -1: continue tmpfl = fl.split('_') if len(tmpfl[1]) == 2 and grav == 'f': exclFile = fl break elif len(tmpfl[1]) == 3: if tmpfl[1][-1] == grav: exclFile = fl break if exclFile != '': try: dataExcl = ascii.read(FOLDER_IN + exclFile, format='no_header', \ delimiter=DELL_CHAR, comment=COMM_CHAR) except: dataExcl = [] if len(dataExcl) == 0 and excluded: print('No objects found in REJECTS file. Nothing to plot.') return elif len(dataExcl) > 0: excludeObjs = np.array(dataExcl['col1']).astype(object) excludeObjs = excludeObjs + np.repeat('.fits', len(dataExcl)) # Find intersection of exclude-obj list and filtered targets list setExclude = set(excludeObjs).intersection(set(NIRfilenames)) # Create list with intersection targets if len(setExclude) != 0: for exclIdx in setExclude: tmpExclIdx = np.where(np.array(NIRfilenames) == exclIdx)[0] toExclude[tmpExclIdx] = True # 10.3 Determine which target is the NIR Standard object O_standard = [None] * 3 # Holds standard for output stdObjs = [False] * len(refs) for idx,spIdx in enumerate(specIdx[specSortIdx]): if data[colNameRef][spIdx] == dataS[colNameRef][stdIdx]: stdObjs[idx] = True if normalize: O_standard[0] = spectraN['J'][idx] O_standard[1] = spectraN['H'][idx] O_standard[2] = spectraN['K'][idx] else: O_standard[0] = spectra['J'][idx] O_standard[1] = spectra['H'][idx] O_standard[2] = spectra['K'][idx] # 10.4 Determine which targets to include in plots (based on user input) # Consolidate plotting & template-flux instructions plotInstructions = ['no'] * len(refs) templInstructions = [False] * len(refs) if grav == 'f': plotinstlbl = 'field' elif grav == 'lg': plotinstlbl = 'low' elif grav == 'g': plotinstlbl = 'gamma' elif grav == 'b': plotinstlbl = 'beta' else: print('Wrong gravity input.') return for plotIdx in range(len(refs)): if toInclude[plotIdx]: plotInstructions[plotIdx] = plotinstlbl templInstructions[plotIdx] = True if toExclude[plotIdx] and excluded: plotInstructions[plotIdx] = 'excluded' # If all plot instructions are "no", then stop procedure (for spectral types) allExcl = True for instr in plotInstructions: if instr != 'no': allExcl = False if allExcl: print('No spectral data to plot based on your request.') return # 11. CALCULATE TEMPLATE SPECTRA FOR SELECTED SET OF SPECTRA --------------------- # Gather spectra to use to calculate template spectrum if not allExcl: O_template = [None] * 3 # Holds calculated template for output templCalculated = False for bandIdx, bandKey in enumerate(BANDS_NAMES): template = None templSpecs = [] for spIdx, spex in enumerate(spectraN[bandKey]): if templInstructions[spIdx]: # Check that spectrum exists if spex is None: templInstructions[spIdx] = False continue if bandKey == 'OPT': # Manually skip including OPT spectrum of some specific targets # which use the same NIR fits file as both OPT and NIR spectrum # so OPT spectrum is very bad if refs[spIdx] == '50246': continue if refs[spIdx] == '50061': continue elif refs[spIdx] == '50188': continue templSpecs.append(spex) else: # Check that spectrum comes with error values (NIR bands only) notNansBool = np.isfinite(spex[2]) notNans = np.any(notNansBool) if notNans: templSpecs.append(spex) else: print(str(objRef[spIdx]) + ' excluded from template') templInstructions[spIdx] = False # Calculate template spectrum using spec uncertainties as weights if len(templSpecs) > 1: if bandKey == 'OPT': template = at.mean_comb(templSpecs, extremes=True) else: template_first, renormSpecs = at.mean_comb(templSpecs, renormalize=True) # Re-calculate template using re-normalized spectra template = at.mean_comb(renormSpecs, extremes=True) # To calculate simple standard deviation, recalculate template without # any weights, and just use the simple variance that comes out of that. tmptempl = at.mean_comb(renormSpecs, forcesimple=True) template[2] = tmptempl[2].copy() templCalculated = True # Append template to list of spectra to plot in the next step if templCalculated: spectraN[bandKey].append(template) # Append template to output object if bandIdx == 0: tempIdx = 2 elif bandIdx == 2: tempIdx = 0 elif bandIdx == 1: tempIdx = 1 else: tempIdx = None if tempIdx is not None: O_template[tempIdx] = template if templCalculated: refs.append('template') plotInstructions.append('template') else: O_template = None # 12. PLOT DATA ----------------------------------------------------------- if plot: # Gather info on each target objInfo = [None] * len(refs) for posIdx,spIdx in enumerate(specIdx[specSortIdx]): tmpDesig = data[colNameDesig][spIdx] tmpJK = data[colNameJK][spIdx] # Append description of special object to its spectral type when missing spDesc = '' try: loc = data[colNameType][spIdx].index(spDesc) except ValueError: loc = None if loc is None: tmpSPtype = data[colNameType][spIdx] + spDesc else: tmpSPtype = data[colNameType][spIdx] tmpSPtype = tmpSPtype + ' ' * (7 - len(tmpSPtype)) # For alignment purposes if tmpDesig == '1126-5003': objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + '%.2f' %tmpJK) else: objInfo[posIdx] = (tmpDesig + ' ' + tmpSPtype + ' ' + '%.2f' %tmpJK) if objInfo[-1] is None: objInfo[-1] = 'template' # Create Figure with Subplots and Annotations figObj = plotspec(spectraN, BANDS_NAMES, BAND_LIMS, objInfo, spTypeInput, \ grav, plotInstructions, excluded) if plot: if excluded: sptxt = '_excluded' else: sptxt = '' figObj.savefig(FOLDER_OUT + spTypeInput + 'strip_' + \ grav + sptxt + '.pdf', dpi=300) # 13. DETERMINE OUTPUT ---------------------------------------------------- if templ: if std: return O_template, O_standard else: return O_template elif std: return O_standard else: return spectraN
tgtNames.append(tgt[0]) fitsNames.append(FOLDER_NIR + tgt[1]) # Break into several plots if too many objects numData = len(dataOrg) if numData > 6: numPlots = int(np.ceil(numData / 6.)) else: numPlots = 1 # 3. GET SPECTRA -------------------------------------------------------------- spectra = at.read_spec(fitsNames, aToMicron=True, negToZero=True, errors=False, plot=False) # 4. CLEAN AND NORMALIZE SPECTRA ---------------------------------------------- spectraC = at.sel_band(spectra, BAND_LIMS) spectraN = at.norm_spec(spectraC, BAND_LIMS) # 6. PLOT ALL SPECTRA --------------------------------------------------------- # Parameter to space spectra more if FILE_LBL == 'emln_galaxies': broad = True else: broad = False start = 0 stop = 6 for plIdx in range(numPlots): if stop > numData: plSpecs = spectraN[start:] plNames = tgtNames[start:] else: plSpecs = spectraN[start:stop]
def main(spInput, grav="", plot=True, templ=False, std=False, lbl=False): # 1. LOAD RELEVANT MODULES --------------------------------------------------------- import asciidata import astrotools as at import pyfits import numpy import sys import pdb import matplotlib.pyplot as plt # 2. SET UP VARIABLES -------------------------------------------------------------- # General variables FOLDER_ROOT = "/Users/alejo/KCData/" # Location of NIR and OPT folders FOLDER_OUT = "Output/NOC/" OPTNIR_KEYS = ["OPT", "NIR"] BANDS_NAMES = ["K", "H", "J", "OPT"] data = "" dataRaw = "" specFiles = "" spectraRaw = "" spectra = "" # For TXT objects file (updatable here directly) FILE_IN = "nir_spex_prism_with_optical_12aug15.txt" # ASCII file w/ data HDR_FILE_IN = ( "Ref", "Designation", "J", "H", "K", "SpType", "SpType_T", "NIRFobs", "NIRFtel", "NIRfile", "OPTobs", "OPTtel", "OPTinst", "OPTfile", "Young?", "Dusty?", "Blue?", "Multiple?", "Pec?", ) colNameRef = HDR_FILE_IN[0] colNameDesig = HDR_FILE_IN[1] colNameJ = HDR_FILE_IN[2] colNameK = HDR_FILE_IN[4] colNameJK = "J-K" colNameType = HDR_FILE_IN[6] colNameYng = HDR_FILE_IN[14] colNameDust = HDR_FILE_IN[15] colNameBlue = HDR_FILE_IN[16] colNameBin = HDR_FILE_IN[17] colNamePec = HDR_FILE_IN[18] # For TXT standards file FILE_IN_STD = "NIR_Standards.txt" # ASCII file w/ standards HDR_FILE_IN_STD = ("Ref", "Designation", "NIR SpType", "OPT SpType") colNameNIRS = HDR_FILE_IN_STD[2] colNameOPTS = HDR_FILE_IN_STD[3] # For TXT exclude-objects file EXCL_FILE = "Exclude_Objs.txt" # ASCII file w/ unums of objects to exclude # 3. READ DATA FROM INPUT FILES----------------------------------------------------- NULL_CHAR = "" # Null character DELL_CHAR = "\t" # Delimiter character COMM_CHAR = "#" # Comment character # File with objects (query in Access) dataRaw = asciidata.open(FOLDER_ROOT + FILE_IN, NULL_CHAR, DELL_CHAR, COMM_CHAR) # Store data in a dictionary-type object data = {}.fromkeys(HDR_FILE_IN) for colIdx, colData in enumerate(dataRaw): data[HDR_FILE_IN[colIdx]] = colData.tonumpy() # File with standards dataRawS = asciidata.open(FOLDER_ROOT + FILE_IN_STD, NULL_CHAR, DELL_CHAR, COMM_CHAR) # Store standard data in a dictionary-type object dataS = {}.fromkeys(HDR_FILE_IN_STD) for colIdx, colData in enumerate(dataRawS): dataS[HDR_FILE_IN_STD[colIdx]] = colData.tonumpy() # 4. FORMAT SOME ASCII COLUMNS ----------------------------------------------------- # 4.1 Convert into unicode the Spectral Type-Text column uniSpType = [None] * len(data[colNameType]) for sIdx, sType in enumerate(data[colNameType]): uniSpType[sIdx] = sType.decode("utf-8") data[colNameType] = numpy.array(uniSpType) # 4.2 Calculate J-K Color And Add J-K Column data[colNameJK] = data[colNameJ] - data[colNameK] # 4.3 Format Designation Number from Designation Column # (From "XX XX XX.X +XX XX XX.X" to "XXXX+XXXX") for desigIdx, desig in enumerate(data[colNameDesig]): desig = "".join(desig.split()) signType = "+" signPos = desig.find(signType) if signPos == -1: signType = "-" signPos = desig.find(signType) desigProper = desig[:4] + signType + desig[signPos + 1 : signPos + 5] data[colNameDesig][desigIdx] = desigProper # 5. FILTER DATA BY USER INPUT IN spInput ------------------------------------------- uniqueSpec = False specIdx = [] if spInput.upper().startswith("L"): # If input is a spectral type, then find all spectra of same spectral type for spIdx, spType in enumerate(data[colNameType]): if spType.upper().startswith(spInput.upper()): specIdx.append(spIdx) if not specIdx: print "No targets found for given input." if std is False: return spTypeInput = spInput.upper() else: # If input is one single spectrum, then find it for spIdx, spType in enumerate(data[colNameRef]): if str(spType) == spInput.upper(): specIdx.append(spIdx) if not specIdx: print "Requested target not found." if std is False: return else: spTypeInput = data[colNameType][specIdx[0]][0:2] uniqueSpec = True # Find NIR standard target that matches user's spectral type stdIdx = [] for spIdx, spType in enumerate(dataS[colNameNIRS]): if spType.upper().startswith(spTypeInput): stdIdx.append(spIdx) # Add NIR standard target to list of filtered objects if not there already # (It may not be included in first filter because OPT SpT != NIR SpT) if not uniqueSpec: if dataS[colNameNIRS][stdIdx] != dataS[colNameOPTS][stdIdx]: for spIdx, spRef in enumerate(data[colNameRef]): if spRef == int(dataS[colNameRef][stdIdx][0]): if spIdx not in specIdx: specIdx.append(spIdx) # Sort relevant objects by JKmag value specIdx = numpy.array(specIdx) specSortIdx = data[colNameJK][specIdx].argsort() # 6. READ SPECTRAL DATA FROM SPECTRAL FILES ---------------------------------------- spectraRaw = {}.fromkeys(OPTNIR_KEYS) # Used to store the raw data from fits files specFilesDict = {}.fromkeys(OPTNIR_KEYS) # Used for reference purposes for key in OPTNIR_KEYS: specFiles = [None] * len(specSortIdx) for sortIdx, specSort in enumerate(specSortIdx): tmpFullName = FOLDER_ROOT + key + "/" + data[key + "file"][specIdx[specSort]] specFiles[sortIdx] = tmpFullName specFilesDict[key] = specFiles spectraRaw[key] = at.read_spec(specFiles, atomicron=True, negtonan=True, errors=True, verbose=False) # Clear out spectral data for objects missing either OPT or NIR data allNone = True for spIdx in range(0, len(spectraRaw["OPT"])): if spectraRaw["OPT"][spIdx] is None: spectraRaw["NIR"][spIdx] = None elif spectraRaw["NIR"][spIdx] is None: spectraRaw["OPT"][spIdx] = None else: allNone = False if allNone: print "No spectral data found for objects of the given spectral type." if std is False: return # Convert spectraRaw contents into lists if only one spectral data # (This reduces the dimensions of the object holding the data) for key in spectraRaw.keys(): if spectraRaw[key][0] is not None: if len(spectraRaw[key][0]) > 3: spectraRaw[key] = [spectraRaw[key]] # 7. GATHER OBJECTS' NAMES---------------------------------------------------------- # Filtered objects refs = [None] * len(specSortIdx) for idx, spIdx in enumerate(specSortIdx): tmpRef = data[colNameRef][specIdx[spIdx]] refs[idx] = str(int(tmpRef)) # Standard objects refsStd = [None] * len(dataS[colNameRef]) for idx, spIdx in enumerate(dataS[colNameRef]): tmpRef = dataS[colNameRef][idx] refsStd[idx] = str(int(tmpRef)) # Gather reference numbers of objects objRef = data[colNameRef][specIdx[specSortIdx]] # 8. SMOOTH SPECTRA ----------------------------------------------------------------- # Smooth the flux data to a reasonable resolution spectraS = {}.fromkeys(OPTNIR_KEYS) tmpSpOPT = at.smooth_spec(spectraRaw["OPT"], specFile=specFilesDict["OPT"], winWidth=10) tmpSpNIR = at.smooth_spec(spectraRaw["NIR"], specFile=specFilesDict["NIR"], winWidth=0) spectraS["OPT"] = tmpSpOPT spectraS["NIR"] = tmpSpNIR # 9. SET LIMITS FOR BANDS AND NORMALIZING SECTIONS---------------------------------- # Initialize dictionary to store limits BAND_LIMS = {}.fromkeys(BANDS_NAMES) for bandKey in BANDS_NAMES: BAND_LIMS[bandKey] = dict(lim=[None] * 2, limN=[None] * 2) # Set wavelength limits for bands # Limits are in microns BAND_LIMS["OPT"]["lim"][0] = 0.65 BAND_LIMS["OPT"]["lim"][1] = 0.90 BAND_LIMS["J"]["lim"][0] = 0.8 BAND_LIMS["J"]["lim"][1] = 1.4 BAND_LIMS["H"]["lim"][0] = 1.4 BAND_LIMS["H"]["lim"][1] = 1.9 BAND_LIMS["K"]["lim"][0] = 1.9 BAND_LIMS["K"]["lim"][1] = 2.4 # Set wl limits for normalizing sections # Limits are in microns BAND_LIMS["OPT"]["limN"][0] = 0.66 BAND_LIMS["OPT"]["limN"][1] = 0.89 BAND_LIMS["J"]["limN"][0] = 0.87 BAND_LIMS["J"]["limN"][1] = 1.39 BAND_LIMS["H"]["limN"][0] = 1.41 BAND_LIMS["H"]["limN"][1] = 1.89 BAND_LIMS["K"]["limN"][0] = 1.91 BAND_LIMS["K"]["limN"][1] = 2.39 # 10. SELECT SPECTRAL DATA FOR OPTICAL, J-BAND, H-BAND, & K-BAND-------------------- # Initialize variables spectra = {}.fromkeys(BANDS_NAMES) spectraN = {}.fromkeys(BANDS_NAMES) for bandKey in BANDS_NAMES: if bandKey == "OPT": optNIR = "OPT" else: optNIR = "NIR" # Select band spectra[bandKey] = at.sel_band(spectraS[optNIR], BAND_LIMS[bandKey]["lim"], objRef) if spectra[bandKey] is None: break # Normalize band spectraN[bandKey], flagN = at.norm_spec(spectra[bandKey], BAND_LIMS[bandKey]["limN"], flag=True) if flagN: print "LIMITS for normalization changed!" if spectraN[bandKey] is None: break # 11. CHARACTERIZE TARGETS (i.e. identify young, blue, to exclude...)--------------- # Determine which targets to exclude using the "Exclude_Objs" file toExclude = [False] * len(refs) dataExcl = asciidata.open(FOLDER_ROOT + EXCL_FILE, NULL_CHAR, DELL_CHAR, COMM_CHAR) if len(dataExcl[0]) > 0: # Extract data from "Exclude_Objs" file excludeObjs = [None] * len(dataExcl[0]) for rowIdx, rowData in enumerate(dataExcl[0]): excludeObjs[rowIdx] = str(rowData) # Find intersection of exclude-obj list and filtered targets list setExclude = set(excludeObjs).intersection(set(refs)) # Create list with intersection targets if len(setExclude) != 0: for exclIdx in setExclude: tmpExclIdx = numpy.where(numpy.array(refs) == exclIdx) toExclude[tmpExclIdx[0]] = True # Determine which target is the NIR Standard object O_standard = [None] * 3 # Holds standard for output stdObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameRef][spIdx] == dataS[colNameRef][stdIdx]: stdObjs[idx] = True O_standard[0] = spectraN["J"][idx] O_standard[1] = spectraN["H"][idx] O_standard[2] = spectraN["K"][idx] # Determine which targets are blue blueObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameBlue][spIdx].upper() == "YES": blueObjs[idx] = True # Determine which targets are dusty dustyObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameDust][spIdx].upper() == "YES": dustyObjs[idx] = True # Determine which targets are binary binObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameBin][spIdx].upper() == "YES": binObjs[idx] = True # Determine which targets are peculiar pecObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNamePec][spIdx].upper() == "YES": pecObjs[idx] = True # Determine which targets are young youngObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): if data[colNameYng][spIdx].upper() == "YES": youngObjs[idx] = True # Determine which targets are GAMMA gammaObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode("utf-8") tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb3" if utcA == "\xce" and utcB == "\xb3": gammaObjs[idx] = True # Determine which targets are BETA betaObjs = [False] * len(refs) for idx, spIdx in enumerate(specIdx[specSortIdx]): tmpType = data[colNameType][spIdx].encode("utf-8") tmpLen = len(tmpType) utcA = tmpType[tmpLen - 2] utcB = tmpType[tmpLen - 1] # GAMMA in utf-8 code is "\xce\xb2" if utcA == "\xce" and utcB == "\xb2": betaObjs[idx] = True # Determine which targets to include in plots (based on user input) # Consolidate plotting & template-flux instructions grav = grav.upper() plotInstructions = ["exclude"] * len(refs) templInstructions = [False] * len(refs) if grav == "Y": # If plot request is Young, include gamma, beta & young targets for plotIdx in range(len(refs)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx] or betaObjs[plotIdx] or youngObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]: continue plotInstructions[plotIdx] = "young" templInstructions[plotIdx] = True elif grav == "G": # If plot request is Gamma, include only gamma targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if gammaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]: continue plotInstructions[plotIdx] = "young" templInstructions[plotIdx] = True elif grav == "B": # If plot request is Beta, include only beta targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx]: if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]: continue plotInstructions[plotIdx] = "young" templInstructions[plotIdx] = True elif grav == "F": # If plot request is Field, include Field & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if betaObjs[plotIdx] or gammaObjs[plotIdx] or youngObjs[plotIdx]: continue if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]: continue if stdObjs[plotIdx]: plotInstructions[plotIdx] = "standard" else: plotInstructions[plotIdx] = "field" templInstructions[plotIdx] = True else: # Otherwise, print Field, gamma, beta, young & Standard targets for plotIdx in range(len(plotInstructions)): if toExclude[plotIdx]: continue if blueObjs[plotIdx] or dustyObjs[plotIdx] or pecObjs[plotIdx] or binObjs[plotIdx]: continue if youngObjs[plotIdx]: plotInstructions[plotIdx] = "young" elif stdObjs[plotIdx]: plotInstructions[plotIdx] = "standard" else: plotInstructions[plotIdx] = "field" templInstructions[plotIdx] = True # If all plot instructions are "exclude", then stop procedure (for spectral types) allExcl = True for instr in plotInstructions: if instr != "exclude": allExcl = False if allExcl: if std: return O_standard if not uniqueSpec: print "No spectral data to plot based on your request." return # 12. CALCULATE TEMPLATE SPECTRA FOR SELECTED SET OF SPECTRA ----------------------- # Gather spectra to use to calculate template spectrum if not allExcl: O_template = [None] * 3 # Holds calculated template for output templCalculated = False for bandIdx, bandKey in enumerate(BANDS_NAMES): if bandKey == "OPT": continue templSpecs = [] for spIdx, spex in enumerate(spectraN[bandKey]): if templInstructions[spIdx]: # Check that spectrum exists if spex is None: templInstructions[spIdx] = False continue if bandKey == "OPT": templSpecs.append(spex) else: # Check that spectrum comes with error values (NIR bands only) notNansBool = numpy.isfinite(spex[2]) notNans = numpy.any(notNansBool) if notNans: templSpecs.append(spex) else: print str(objRef[spIdx]) + " excluded from template" # Calculate template spectrum if len(templSpecs) > 1: template = at.mean_comb(templSpecs) templCalculated = True # Append template to list of spectra to plot in the next step spectraN[bandKey].append(template) # Append template to output object if bandIdx == 0: tempIdx = 2 elif bandIdx == 2: tempIdx = 0 else: tempIdx = 1 O_template[tempIdx] = template if templCalculated: refs.append("template") plotInstructions.append("template") else: O_template = None # 13. PLOT DATA -------------------------------------------------------------------- if lbl or plot: # Gather info on each target objInfo = [None] * len(refs) for posIdx, spIdx in enumerate(specIdx[specSortIdx]): tmpDesig = data[colNameDesig][spIdx] tmpJK = data[colNameJK][spIdx] tmpSPtype = data[colNameType][spIdx] tmpSPtype = tmpSPtype + " " * (5 - len(tmpSPtype)) # For alignment purposes objInfo[posIdx] = tmpDesig + " " + tmpSPtype + " " + "%.2f" % tmpJK if objInfo[-1] is None: objInfo[-1] = "template" if plot: # Create Figure with Subplots and Annotations figObj = plotspec(spectraN, BANDS_NAMES, BAND_LIMS, objInfo, spTypeInput, grav, plotInstructions) figObj.savefig(FOLDER_ROOT + FOLDER_OUT + spTypeInput + grav + ".pdf", dpi=600) # 14. DETERMINE OUTPUT ------------------------------------------------------------- if templ: if std: return O_template, O_standard else: return O_template elif std: return O_standard else: if lbl: return spectraN, objInfo else: return spectraN
# 3. GET SPECTRAL NIR STANDARDS & TEMPLATES ----------------------------------- spTypes = [] spectra = {}.fromkeys(BANDS) for band in BANDS: spectra[band] = [] for idxTp, spTp in enumerate(SPTYPES): # Fetch standard tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False) # Normalize standard for bdIdx, band in enumerate(BANDS): if idxTp in [1, 2, 3] and band == "H": norm_lims = SPECIAL_H_NORM_LIM else: norm_lims = NORM_LIMS[band]["lim"] stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0] spectra[band].append(stdToPlot) # spectra[band].append(tmpStd[bdIdx]) # Fetch template from ascii files generated by make_templ.py in templates/ folder. for bdIdx, band in enumerate(BANDS): fileNm = spTp + band + "_" + GRAV + ".txt" templRaw = ad.read(FOLDER_OUT_TMPL + fileNm, delimiter="\t", format="no_header") templRawToPlot = np.array([templRaw.columns[i] for i in range(5)]) # Normalize when necessary if len(templRawToPlot) <= 3: if idxTp in [1, 2, 3] and band == "H": norm_lims = SPECIAL_H_NORM_LIM else: norm_lims = NORM_LIMS[band]["lim"]
if spTp in SPSTDNM: if spTp == 'L2': isp = 0 elif spTp == 'L5': isp = 1 else: isp = 2 tmpspec = at.read_spec(FOLDER_DATASPEC + 'NIR/' + SPSTD[isp], errors=False, \ atomicron=True, negtonan=True) for band in BANDS: tmpband = at.sel_band(tmpspec, BAND_LIMS[band]['lim']) if idxTp in [1,2,3] and band == 'H': norm_lims = SPECIAL_H_NORM_LIM else: norm_lims = NORM_LIMS[band]['lim'] stdToPlot = at.norm_spec(tmpband, norm_lims)[0] spectra[band].append(stdToPlot) spTypes.append(spTp) # # Fetch standard # tmpStd = nocs.main(spTp, GRAV, plot=False, std=True, normalize=False) # # Normalize standard # for bdIdx, band in enumerate(BANDS): # if idxTp in [1,2,3] and band == 'H': # norm_lims = SPECIAL_H_NORM_LIM # else: # norm_lims = NORM_LIMS[band]['lim'] # stdToPlot = at.norm_spec(tmpStd[bdIdx], norm_lims)[0] # spectra[band].append(stdToPlot) # #spectra[band].append(tmpStd[bdIdx])
BAND_NORMS['K'][1] = 2.39 # 3. GET SPECTRUM OF TARGET --------------------------------------------------- specRaw = at.read_spec(interestObject)[0] specRaw = np.array(specRaw) if specRaw is None: print 'Could not get spectrum from file.' sys.exit(0) # Separate spectrum by bands specSep = separate_bands(specRaw, BANDS, BAND_LIMS) # Normalize spectrum specN = [None] * 3 for bIdx, band in enumerate(BANDS): specN[bIdx] = at.norm_spec(specSep[bIdx], BAND_NORMS[band])[0] if specN[0] is None: 'Error normalizing spectra.' sys.exit(0) # 4. GET NIR TEMPLATES -------------------------------------------------------- # 4.1 Initialize holder of template spectra and strips templ = [None] * len(SP_TYPES) for tp in range(len(SP_TYPES)): templ[tp] = [[] for i in range(3)] # 4.2 Fetch templates for spIdx, sp in enumerate(SP_TYPES): for bdIdx, band in enumerate(BANDS): if AdamTemplates: