Пример #1
0
def build_ipv4(anm, infrastructure=True):
    """Builds IPv4 graph"""
    g_ipv4 = anm.add_overlay("ipv4")
    g_in = anm['input']
    g_graphics = anm['graphics']
    g_phy = anm['phy']

    g_ipv4.add_nodes_from(g_in)
    g_ipv4.add_edges_from(g_in.edges(type="physical"))

    ank_utils.aggregate_nodes(g_ipv4, g_ipv4.nodes("is_switch"),
                              retain="edge_id")

    edges_to_split = [edge for edge in g_ipv4.edges() if edge.attr_both(
        "is_l3device")]
    split_created_nodes = list(
        ank_utils.split(g_ipv4, edges_to_split, retain='edge_id'))
    for node in split_created_nodes:
        node['graphics'].x = ank_utils.neigh_average(g_ipv4, node, "x",
                                                     g_graphics) + 0.1 # temporary fix for gh-90
        node['graphics'].y = ank_utils.neigh_average(g_ipv4, node, "y",
                                                     g_graphics) + 0.1 # temporary fix for gh-90
        asn = ank_utils.neigh_most_frequent(
            g_ipv4, node, "asn", g_phy)  # arbitrary choice
        node['graphics'].asn = asn
        node.asn = asn # need to use asn in IP overlay for aggregating subnets

    switch_nodes = g_ipv4.nodes("is_switch")  # regenerate due to aggregated
    g_ipv4.update(switch_nodes, collision_domain=True)
                 # switches are part of collision domain
    g_ipv4.update(split_created_nodes, collision_domain=True)
# Assign collision domain to a host if all neighbours from same host
    for node in split_created_nodes:
        if ank_utils.neigh_equal(g_ipv4, node, "host", g_phy):
            node.host = ank_utils.neigh_attr(
                g_ipv4, node, "host", g_phy).next()  # first attribute

# set collision domain IPs
    for node in g_ipv4.nodes("collision_domain"):
        graphics_node = g_graphics.node(node)
        graphics_node.device_type = "collision_domain"
        if not node.is_switch:
            label = "_".join(
                sorted(ank_utils.neigh_attr(g_ipv4, node, "label", g_phy)))
            cd_label = "cd_%s" % label  # switches keep their names
            node.label = cd_label
            node.cd_id = cd_label
            graphics_node.label = cd_label

    #TODO: need to set allocate_ipv4 by default in the readers
    if g_in.data.allocate_ipv4 is False:
        manual_ipv4_allocation(anm)
    else:
        import autonetkit.plugins.ipv4 as ipv4
        ipv4.allocate_ips(g_ipv4, infrastructure)
        ank_utils.save(g_ipv4)
Пример #2
0
def build_ip(anm):
    g_ip = anm.add_overlay("ip")
    g_in = anm['input']
    g_graphics = anm['graphics']
    g_phy = anm['phy']

    g_ip.add_nodes_from(g_in)
    g_ip.add_edges_from(g_in.edges(type="physical"))

    ank_utils.aggregate_nodes(g_ip, g_ip.nodes("is_switch"),
                              retain="edge_id")

    edges_to_split = [edge for edge in g_ip.edges() if edge.attr_both(
        "is_l3device")]
    for edge in edges_to_split:
        edge.split = True # mark as split for use in building nidb
    split_created_nodes = list(
        ank_utils.split(g_ip, edges_to_split, retain=['edge_id', 'split']))
    for node in split_created_nodes:
        node['graphics'].x = ank_utils.neigh_average(g_ip, node, "x",
                                                     g_graphics) + 0.1 # temporary fix for gh-90
        node['graphics'].y = ank_utils.neigh_average(g_ip, node, "y",
                                                     g_graphics) + 0.1 # temporary fix for gh-90
        asn = ank_utils.neigh_most_frequent(
            g_ip, node, "asn", g_phy)  # arbitrary choice
        node['graphics'].asn = asn
        node.asn = asn # need to use asn in IP overlay for aggregating subnets

    switch_nodes = g_ip.nodes("is_switch")  # regenerate due to aggregated
    g_ip.update(switch_nodes, collision_domain=True)
                 # switches are part of collision domain
    g_ip.update(split_created_nodes, collision_domain=True)
# Assign collision domain to a host if all neighbours from same host
    for node in split_created_nodes:
        if ank_utils.neigh_equal(g_ip, node, "host", g_phy):
            node.host = ank_utils.neigh_attr(
                g_ip, node, "host", g_phy).next()  # first attribute

# set collision domain IPs
    for node in g_ip.nodes("collision_domain"):
        graphics_node = g_graphics.node(node)
        graphics_node.device_type = "collision_domain"
        if not node.is_switch:
            label = "_".join(
                sorted(ank_utils.neigh_attr(g_ip, node, "label", g_phy)))
            cd_label = "cd_%s" % label  # switches keep their names
            node.label = cd_label
            node.cd_id = cd_label
            graphics_node.label = cd_label
Пример #3
0
def build_ip(anm):
    import autonetkit.plugins.ipv4 as ip
    G_ip = anm.add_overlay("ip")
    G_in = anm['input']
    G_graphics = anm['graphics']
    G_phy = anm['phy']

    G_ip.add_nodes_from(G_in)
    G_ip.add_edges_from(G_in.edges(type="physical"))

    ank.aggregate_nodes(G_ip, G_ip.nodes("is_switch"), retain = "edge_id")

    edges_to_split = [edge for edge in G_ip.edges() if edge.attr_both("is_l3device")]
    split_created_nodes = list(ank.split(G_ip, edges_to_split, retain='edge_id'))
    for node in split_created_nodes:
        node['graphics'].x = ank.neigh_average(G_ip, node, "x", G_graphics)
        node['graphics'].y = ank.neigh_average(G_ip, node, "y", G_graphics)

    G_ip.update(split_created_nodes, collision_domain=True)

    for node in G_ip.nodes("collision_domain"):
        graphics_node = G_graphics.node(node)
        node.host = G_phy.node(node.neighbors().next()).host # Set host to be same as one of the neighbors (arbitrary choice)
        asn = ank.neigh_most_frequent(G_ip, node, "asn", G_phy) # arbitrary choice
        node.asn = asn
        graphics_node.asn = asn
        graphics_node.x = ank.neigh_average(G_ip, node, "x", G_graphics)

        graphics_node.device_type = "collision_domain"
        cd_label = "cd_" + "_".join(sorted(ank.neigh_attr(G_ip, node, "label", G_phy)))
        node.label = cd_label 
        graphics_node.label = cd_label

    ip.allocate_ips(G_ip)
Пример #4
0
def assign_asn_to_interasn_cds(g_ip, address_block = None):
    G_phy = g_ip.overlay("phy")
    for collision_domain in g_ip.nodes("collision_domain"):
        neigh_asn = list(ank_utils.neigh_attr(g_ip, collision_domain, "asn", G_phy)) #asn of neighbors
        if len(set(neigh_asn)) == 1:
            asn = set(neigh_asn).pop() # asn of any neigh, as all same
        else:
            asn = ank_utils.most_frequent(neigh_asn) # allocate cd to asn with most neighbors in it
        collision_domain.asn = asn

    return
Пример #5
0
def assign_asn_to_interasn_cds(g_ip, address_block=None):
    G_phy = g_ip.overlay('phy')
    for broadcast_domain in g_ip.nodes('broadcast_domain'):
        neigh_asn = list(ank_utils.neigh_attr(g_ip, broadcast_domain,
                         'asn', G_phy))  # asn of neighbors
        if len(set(neigh_asn)) == 1:
            asn = set(neigh_asn).pop()  # asn of any neigh, as all same
        else:
            asn = ank_utils.most_frequent(neigh_asn)  # allocate cd to asn with most neighbors in it
        broadcast_domain.asn = asn

    return
Пример #6
0
def assign_asn_to_interasn_cds(G_ip):
    #TODO: rename to assign_asn_to_cds as also does intra-asn cds
    #TODO: make this a common function to ip4 and ip6
    G_phy = G_ip.overlay("phy")
    for collision_domain in G_ip.nodes("collision_domain"):
        neigh_asn = list(ank_utils.neigh_attr(G_ip, collision_domain, "asn", G_phy)) #asn of neighbors
        if len(set(neigh_asn)) == 1:
            asn = set(neigh_asn).pop() # asn of any neigh, as all same
        else:
            asn = ank_utils.most_frequent(neigh_asn) # allocate cd to asn with most neighbors in it
        collision_domain.asn = asn

    return
Пример #7
0
def assign_asn_to_interasn_cds(G_ip):
    #TODO: remove this if no longer needed

    # TODO: rename to assign_asn_to_cds as also does intra-asn cds
    # TODO: make this a common function to ip4 and ip6

    G_phy = G_ip.overlay('phy')
    for broadcast_domain in G_ip.nodes('broadcast_domain'):
        neigh_asn = list(ank_utils.neigh_attr(G_ip, broadcast_domain,
                         'asn', G_phy))  # asn of neighbors
        if len(set(neigh_asn)) == 1:
            asn = set(neigh_asn).pop()  # asn of any neigh, as all same
        else:
            asn = ank_utils.most_frequent(neigh_asn)  # allocate bc to asn with most neighbors in it
        broadcast_domain.asn = asn

    return
Пример #8
0
def build_layer2_broadcast(anm):
    g_l2 = anm['layer2']
    g_phy = anm['phy']
    g_graphics = anm['graphics']
    g_l2_bc = anm.add_overlay('layer2_bc')
    g_l2_bc.add_nodes_from(g_l2.l3devices())
    g_l2_bc.add_nodes_from(g_l2.switches())
    g_l2_bc.add_edges_from(g_l2.edges(), retain=['link_type'])

    # remove external connectors

    edges_to_split = [edge for edge in g_l2_bc.edges()
                      if edge.src.is_l3device() and edge.dst.is_l3device()]
    # TODO: debug the edges to split
    for edge in edges_to_split:
        edge.split = True  # mark as split for use in building nidb

    split_created_nodes = list(ank_utils.split(g_l2_bc, edges_to_split,
                                               retain=['split'],
                                               id_prepend='cd_'))

    # TODO: if parallel nodes, offset
    # TODO: remove graphics, assign directly
    if len(g_graphics):
        co_ords_overlay = g_graphics  # source from graphics overlay
    else:
        co_ords_overlay = g_phy  # source from phy overlay

    for node in split_created_nodes:
        node['graphics'].x = ank_utils.neigh_average(g_l2_bc, node, 'x',
                                                     co_ords_overlay) + 0.1

        # temporary fix for gh-90

        node['graphics'].y = ank_utils.neigh_average(g_l2_bc, node, 'y',
                                                     co_ords_overlay) + 0.1

        # temporary fix for gh-90

        asn = ank_utils.neigh_most_frequent(
            g_l2_bc, node, 'asn', g_phy)  # arbitrary choice
        node['graphics'].asn = asn
        node.asn = asn  # need to use asn in IP overlay for aggregating subnets

    # also allocate an ASN for virtual switches
    vswitches = [n for n in g_l2_bc.nodes()
                 if n['layer2'].device_type == "switch"
                 and n['layer2'].device_subtype == "virtual"]
    for node in vswitches:
        # TODO: refactor neigh_most_frequent to allow fallthrough attributes
        # asn = ank_utils.neigh_most_frequent(g_l2_bc, node, 'asn', g_l2)  #
        # arbitrary choice
        asns = [n['layer2'].asn for n in node.neighbors()]
        asns = [x for x in asns if x is not None]
        asn = ank_utils.most_frequent(asns)
        node.asn = asn  # need to use asn in IP overlay for aggregating subnets
        # also mark as broadcast domain

    from collections import defaultdict
    coincident_nodes = defaultdict(list)
    for node in split_created_nodes:
        coincident_nodes[(node['graphics'].x, node['graphics'].y)].append(node)

    coincident_nodes = {k: v for k, v in coincident_nodes.items()
                        if len(v) > 1}  # trim out single node co-ordinates
    import math
    for _, val in coincident_nodes.items():
        for index, item in enumerate(val):
            index = index + 1
            x_offset = 25 * math.floor(index / 2) * math.pow(-1, index)
            y_offset = -1 * 25 * math.floor(index / 2) * math.pow(-1, index)
            item['graphics'].x = item['graphics'].x + x_offset
            item['graphics'].y = item['graphics'].y + y_offset

    switch_nodes = g_l2_bc.switches()  # regenerate due to aggregated
    g_l2_bc.update(switch_nodes, broadcast_domain=True)

    # switches are part of collision domain
    g_l2_bc.update(split_created_nodes, broadcast_domain=True)

    # Assign collision domain to a host if all neighbours from same host

    for node in split_created_nodes:
        if ank_utils.neigh_equal(g_l2_bc, node, 'host', g_phy):
            node.host = ank_utils.neigh_attr(g_l2_bc, node, 'host',
                                             g_phy).next()  # first attribute

    # set collision domain IPs
    # TODO; work out why this throws a json exception
    #autonetkit.ank.set_node_default(g_l2_bc,  broadcast_domain=False)

    for node in g_l2_bc.nodes('broadcast_domain'):
        graphics_node = g_graphics.node(node)
        #graphics_node.device_type = 'broadcast_domain'
        if node.is_switch():
            # TODO: check not virtual
            node['phy'].broadcast_domain = True
        if not node.is_switch():
            # use node sorting, as accomodates for numeric/string names
            graphics_node.device_type = 'broadcast_domain'
            neighbors = sorted(neigh for neigh in node.neighbors())
            label = '_'.join(neigh.label for neigh in neighbors)
            cd_label = 'cd_%s' % label  # switches keep their names
            node.label = cd_label
            graphics_node.label = cd_label
            node.device_type = "broadcast_domain"
            node.label = node.id
            graphics_node.label = node.id

    for node in vswitches:
        node.broadcast_domain = True
Пример #9
0
Файл: ip.py Проект: sk2/ANK-NG
def allocate_ips(G_ip):
    log.info("Allocating IP addresses")
    from netaddr import IPNetwork
    address_block = IPNetwork("10.0.0.0/8")
    subnet_address_blocks = address_block.subnet(16)
#TODO: need to divide this up per AS

    G_ip.data.asn_blocks = defaultdict(list)
    #print G_ip._graph
    
    G_phy = G_ip.overlay.phy
    collision_domains = list(G_ip.nodes("collision_domain"))

    routers_by_asn = G_phy.groupby("asn", G_phy.nodes(device_type="router"))

    for collision_domain in collision_domains:
        neigh_asn = list(ank_utils.neigh_attr(G_ip, collision_domain, "asn", G_phy)) #asn of neighbors
        if len(set(neigh_asn)) == 1:
            asn = set(neigh_asn).pop() # asn of any neigh, as all same
        else:
            asn = ank_utils.most_frequent(neigh_asn) # allocate cd to asn with most neighbors in it
        collision_domain.asn = asn

    cds_by_asn = G_ip.groupby("asn", G_ip.nodes("collision_domain"))

# if node or subnet has IP already allocated, then skip from this tree

    for asn in routers_by_asn:
        log.info("Allocating IPs for ASN %s" % asn)
# Need to iterate by asn with routers, as single router AS may not have a cd
        asn_cds = cds_by_asn.get(asn) or []
        asn_cds = sorted(asn_cds)
#tree by ASN
#TODO: Add in loopbacks as a subnet also
        asn_address_block = subnet_address_blocks.next()
        #print "ips for asn", asn
        G_ip.data.asn_blocks[asn].append(asn_address_block)
#TODO: record this in G_ip graph data not node/edge data

        # Build list of collision domains sorted by size
        size_list = defaultdict(list)
        for cd in asn_cds:
            sn_size = subnet_size(cd.degree()) # Size of this collision domain
            size_list[sn_size].append(cd)

        loopback_size = subnet_size(len(routers_by_asn[asn])) # calculate from number of routers in asn

        ip_tree = defaultdict(list) # index by level to simplify creation of tree
        try:
            current_level = min(size_list) # start at base
        except ValueError:
            current_level = loopback_size # no cds, start at loopback
        
        asn_loopback_tree_node = None #keep track of to allocate loopbacks at end
        while True:
            cds = size_list[current_level]
            cds = sorted(cds, key = lambda x: x.node_id)
# initialse with leaves
#TODO: see if can get loopback on leftmost of tree -> then can have allocated with .1 .2 etc rather than .19 .20 etc
            ip_tree[current_level] += list(TreeNode(cd=cd) for cd in sorted(cds))
            if current_level == loopback_size:
                asn_loopback_tree_node = TreeNode(cd = "loopback")
                ip_tree[current_level].append(asn_loopback_tree_node)

            # now connect up at parent level
            tree_nodes = sorted(ip_tree[current_level]) # both leaves and parents of lower level
            pairs = list(itertools.izip(tree_nodes[::2], tree_nodes[1::2]))
            for left, right in pairs:
                ip_tree[current_level+1].append(TreeNode(left, right))
            if len(tree_nodes) % 2 == 1:
# odd number of tree nodes, add 
                final_tree_node = tree_nodes[-1]
                ip_tree[current_level+1].append(TreeNode(final_tree_node, None))

            current_level += 1
            if asn_loopback_tree_node and len(ip_tree[current_level]) < 2:
                # loopback has been allocated, and reached top of tree
                break

            #if leaf, assign back to collision domain

        # allocate to tree
        subnet_bits = 32 - max(ip_tree)
        tree_subnet = asn_address_block.subnet(subnet_bits)
        tree_root = ip_tree[max(ip_tree)].pop() # only one node at highest level (root)
        tree_root.subnet = tree_subnet.next()
        allocate_to_tree_node(tree_root)
        #walk_tree(tree_root)
        allocate_ips_to_cds(tree_root)

        my_tree = Tree(tree_root, asn)
        my_tree.save()

        # Get loopback from loopback tree node
        loopback_hosts = asn_loopback_tree_node.subnet.iter_hosts()
        #router.loopback = loopback_hosts.next()
        for router in sorted(routers_by_asn[asn], key = lambda x: x.label):
            router.overlay.ip.loopback = loopback_hosts.next()

        # now allocate to the links of each cd
        for cd in asn_cds:
            hosts = cd.subnet.iter_hosts()
            for edge in sorted(cd.edges()):
                edge.ip_address = hosts.next()
Пример #10
0
def build_layer2_broadcast(anm):
        g_l2 = anm['layer2']
        g_phy = anm['phy']
        g_graphics = anm['graphics']
        g_l2_bc = anm.add_overlay('layer2_bc')
        g_l2_bc.add_nodes_from(g_l2)
        g_l2_bc.add_edges_from(g_l2.edges())

        edges_to_split = [edge for edge in g_l2_bc.edges()
            if edge.src.is_l3device() and edge.dst.is_l3device()]
        for edge in edges_to_split:
            edge.split = True  # mark as split for use in building nidb

        split_created_nodes = list(ank_utils.split(g_l2_bc, edges_to_split,
                                   retain=['split'],
                                   id_prepend='cd_'))
        for node in split_created_nodes:
            node['graphics'].x = ank_utils.neigh_average(g_l2_bc, node, 'x',
                    g_graphics) + 0.1

             # temporary fix for gh-90

            node['graphics'].y = ank_utils.neigh_average(g_l2_bc, node, 'y',
                    g_graphics) + 0.1

                # temporary fix for gh-90

            asn = ank_utils.neigh_most_frequent(g_l2_bc, node, 'asn', g_phy)  # arbitrary choice
            node['graphics'].asn = asn
            node.asn = asn  # need to use asn in IP overlay for aggregating subnets

        switch_nodes = g_l2_bc.switches()  # regenerate due to aggregated
        g_l2_bc.update(switch_nodes, broadcast_domain=True)

                     # switches are part of collision domain

        g_l2_bc.update(split_created_nodes, broadcast_domain=True)

    # Assign collision domain to a host if all neighbours from same host

        for node in split_created_nodes:
            if ank_utils.neigh_equal(g_l2_bc, node, 'host', g_phy):
                node.host = ank_utils.neigh_attr(g_l2_bc, node, 'host',
                        g_phy).next()  # first attribute

        # set collision domain IPs
        #TODO; work out why this throws a json exception
        #autonetkit.ank.set_node_default(g_l2_bc,  broadcast_domain=False)

        for node in g_l2_bc.nodes('broadcast_domain'):
            graphics_node = g_graphics.node(node)
            #graphics_node.device_type = 'broadcast_domain'
            if node.is_switch():
                node['phy'].broadcast_domain = True
            if not node.is_switch():
                # use node sorting, as accomodates for numeric/string names
                graphics_node.device_type = 'broadcast_domain'
                neighbors = sorted(neigh for neigh in node.neighbors())
                label = '_'.join(neigh.label for neigh in neighbors)
                cd_label = 'cd_%s' % label  # switches keep their names
                node.label = cd_label
                graphics_node.label = cd_label
                node.device_type = "broadcast_domain"
Пример #11
0
def build_layer2_broadcast(anm):
    g_l2 = anm['layer2']
    g_phy = anm['phy']
    g_graphics = anm['graphics']
    g_l2_bc = anm.add_overlay('layer2_bc')
    g_l2_bc.add_nodes_from(g_l2.l3devices())
    g_l2_bc.add_nodes_from(g_l2.switches())
    g_l2_bc.add_edges_from(g_l2.edges())

    # remove external connectors

    edges_to_split = [
        edge for edge in g_l2_bc.edges()
        if edge.src.is_l3device() and edge.dst.is_l3device()
    ]
    #TODO: debug the edges to split
    #print "edges to split", edges_to_split
    for edge in edges_to_split:
        edge.split = True  # mark as split for use in building nidb

    split_created_nodes = list(
        ank_utils.split(g_l2_bc,
                        edges_to_split,
                        retain=['split'],
                        id_prepend='cd_'))

    #TODO: if parallel nodes, offset
    #TODO: remove graphics, assign directly
    for node in split_created_nodes:
        node['graphics'].x = ank_utils.neigh_average(g_l2_bc, node, 'x',
                                                     g_graphics) + 0.1

        # temporary fix for gh-90

        node['graphics'].y = ank_utils.neigh_average(g_l2_bc, node, 'y',
                                                     g_graphics) + 0.1

        # temporary fix for gh-90

        asn = ank_utils.neigh_most_frequent(g_l2_bc, node, 'asn',
                                            g_phy)  # arbitrary choice
        node['graphics'].asn = asn
        node.asn = asn  # need to use asn in IP overlay for aggregating subnets

    from collections import defaultdict
    coincident_nodes = defaultdict(list)
    for node in split_created_nodes:
        coincident_nodes[(node['graphics'].x, node['graphics'].y)].append(node)

    coincident_nodes = {
        k: v
        for k, v in coincident_nodes.items() if len(v) > 1
    }  # trim out single node co-ordinates
    import math
    for key, val in coincident_nodes.items():
        for index, item in enumerate(val):
            index = index + 1
            x_offset = 25 * math.floor(index / 2) * math.pow(-1, index)
            y_offset = -1 * 25 * math.floor(index / 2) * math.pow(-1, index)
            item['graphics'].x = item['graphics'].x + x_offset
            item['graphics'].y = item['graphics'].y + y_offset

    switch_nodes = g_l2_bc.switches()  # regenerate due to aggregated
    g_l2_bc.update(switch_nodes, broadcast_domain=True)

    # switches are part of collision domain
    g_l2_bc.update(split_created_nodes, broadcast_domain=True)

    # Assign collision domain to a host if all neighbours from same host

    for node in split_created_nodes:
        if ank_utils.neigh_equal(g_l2_bc, node, 'host', g_phy):
            node.host = ank_utils.neigh_attr(g_l2_bc, node, 'host',
                                             g_phy).next()  # first attribute

    # set collision domain IPs
    #TODO; work out why this throws a json exception
    #autonetkit.ank.set_node_default(g_l2_bc,  broadcast_domain=False)

    for node in g_l2_bc.nodes('broadcast_domain'):
        graphics_node = g_graphics.node(node)
        #graphics_node.device_type = 'broadcast_domain'
        if node.is_switch():
            node['phy'].broadcast_domain = True
        if not node.is_switch():
            # use node sorting, as accomodates for numeric/string names
            graphics_node.device_type = 'broadcast_domain'
            neighbors = sorted(neigh for neigh in node.neighbors())
            label = '_'.join(neigh.label for neigh in neighbors)
            cd_label = 'cd_%s' % label  # switches keep their names
            node.label = cd_label
            graphics_node.label = cd_label
            node.device_type = "broadcast_domain"
            node.label = node.id
            graphics_node.label = node.id
Пример #12
0
def build_ip(anm):
    import autonetkit.plugins.ip as ip
    G_ip = anm.add_overlay("ip")
    G_in = anm['input']
    G_graphics = anm['graphics']
    G_phy = anm['phy']

    G_ip.add_nodes_from(G_in)
    G_ip.add_edges_from(G_in.edges(type="physical"))

#TODO: need to look at if allocate_v6 is specified: ie manually set

    ank.aggregate_nodes(G_ip, G_ip.nodes("is_switch"), retain = "edge_id")
#TODO: add function to update edge properties: can overload node update?

    edges_to_split = [edge for edge in G_ip.edges() if edge.attr_both("is_l3device")]
    split_created_nodes = list(ank.split(G_ip, edges_to_split, retain='edge_id'))
    for node in split_created_nodes:
        node['graphics'].x = ank.neigh_average(G_ip, node, "x", G_graphics)
        node['graphics'].y = ank.neigh_average(G_ip, node, "y", G_graphics)
        asn = ank.neigh_most_frequent(G_ip, node, "asn", G_phy) # arbitrary choice
        node['graphics'].asn = asn
# need to use asn in IP overlay for aggregating subnets
        node.asn = asn
#TODO: could choose largest ASN if tie break
#TODO: see if need G_phy - should auto fall through to phy for ASN

    switch_nodes = G_ip.nodes("is_switch")# regenerate due to aggregated
    G_ip.update(switch_nodes, collision_domain=True) # switches are part of collision domain
    G_ip.update(split_created_nodes, collision_domain=True)
# Assign collision domain to a host if all neighbours from same host
    for node in split_created_nodes:
        if ank.neigh_equal(G_ip, node, "host", G_phy):
            node.host = ank.neigh_attr(G_ip, node, "host", G_phy).next() # first attribute

    #TODO: Need to allocate interfaces or appropriate bypass for collision domain nodes

# set collision domain IPs
#TODO: trim next line
    collision_domain_id = itertools.count(0) # TODO: remove this, as isn't needed as set id to be based on neighbors
    for node in G_ip.nodes("collision_domain"):
        graphics_node = G_graphics.node(node)
        graphics_node.device_type = "collision_domain"
        cd_id = collision_domain_id.next()
        node.cd_id = cd_id
#TODO: Use this label
        if not node.is_switch:
            label = "_".join(sorted(ank.neigh_attr(G_ip, node, "label", G_phy)))
            cd_label = "cd_%s" % label # switches keep their names
            node.label = cd_label 
            node.cd_id = cd_label
            graphics_node.label = cd_label

    if G_in.data.allocate_ipv4 == False:
        import netaddr
        G_in_directed = anm['input_directed']

        for l3_device in G_ip.nodes("is_l3device"):
            directed_node = G_in_directed.node(l3_device)
            l3_device.loopback = directed_node.ipv4loopback
            for edge in l3_device.edges():
                # find edge in G_in_directed
                directed_edge = G_in_directed.edge(edge)
                edge.ip_address = netaddr.IPAddress(directed_edge.ipv4)

                # set subnet onto collision domain (can come from either direction) 
                collision_domain = edge.dst
                if not collision_domain.subnet:
                    #TODO: see if direct method in netaddr to deduce network
                    prefixlen = directed_edge.netPrefixLenV4
                    cidr_string = "%s/%s" % (edge.ip_address, prefixlen)
                    intermediate_subnet = netaddr.IPNetwork(cidr_string)
                    cidr_string = "%s/%s" % (intermediate_subnet.network, prefixlen)
                    subnet = netaddr.IPNetwork(cidr_string)
                    collision_domain.subnet = subnet

        # also need to form aggregated IP blocks (used for e.g. routing prefix advertisement)
        loopback_blocks = {}
        infra_blocks = {}
        for asn, devices in G_ip.groupby("asn").items():
            routers = [d for d in devices if d.is_router]
            loopbacks = [r.loopback for r in routers]
            loopback_blocks[asn] = netaddr.cidr_merge(loopbacks)

            collision_domains = [d for d in devices if d.collision_domain]
            subnets = [cd.subnet for cd in collision_domains]
            infra_blocks[asn] = netaddr.cidr_merge(subnets)

        G_ip.data.loopback_blocks = loopback_blocks
        G_ip.data.infra_blocks = infra_blocks

    else:
        ip.allocate_ips(G_ip)
        ank.save(G_ip)