Пример #1
0
 def get_sampler(beam_size):
     # FIXME In practice, the beam size is probably the same for all
     # input items, but if it gets changed a lot, then constructing a
     # new beam search graph for each combination isn't great. Can it
     # be turned into a placeholder?
     if beam_size not in samplers:
         samplers[beam_size] = BeamSearchSampler(models, self._options,
                                                 beam_size)
     return samplers[beam_size]
Пример #2
0
    def __init__(self,
                 config,
                 num_gpus,
                 replicas,
                 optimizer,
                 global_step,
                 summary_writer=None):
        """Builds TF graph nodes for model updating (via _ModelUpdateGraph).

        Args:
            config: the model config (an argparse.Namespace)
            num_gpus: the number of available GPUs.
            replicas: a list of RNNModel or Transformer objects.
            optimizer: a TensorFlow optimizer.
            global_step: a tf.Variable to be updated by optimizer.
            summary_writer: a tf.summary.FileWriter object.
        """
        assert len(replicas) > 0

        assert (len(replicas) == num_gpus
                or (len(replicas) == 1 and num_gpus == 0))

        self._config = config
        self._replicas = replicas
        self._summary_writer = summary_writer

        self._graph = _ModelUpdateGraph(config, num_gpus, replicas, optimizer,
                                        global_step)

        if config.loss_function == 'MRT':
            if config.sample_way == 'beam_search':
                self._mrt_sampler = BeamSearchSampler(
                    models=[replicas[0]],
                    configs=[config],
                    beam_size=config.samplesN)
            else:
                assert config.sample_way == 'randomly_sample'
                # Set beam_size to config.samplesN instead of using
                #      np.repeat to expand input in full_sampler()
                self._mrt_sampler = RandomSampler(models=[replicas[0]],
                                                  configs=[config],
                                                  beam_size=config.samplesN)
Пример #3
0
def main(settings):
    """
    Translates a source language file (or STDIN) into a target language file
    (or STDOUT).
    """
    # Create the TensorFlow session.
    g = tf.Graph()
    with g.as_default():
        tf_config = tf.compat.v1.ConfigProto()
        tf_config.allow_soft_placement = True
        session = tf.compat.v1.Session(config=tf_config)

        # Load config file for each model.
        configs = []
        for model in settings.models:
            config = load_config_from_json_file(model)
            setattr(config, 'reload', model)
            setattr(config, 'translation_maxlen', settings.translation_maxlen)
            configs.append(config)

        # Create the model graphs.
        logging.debug("Loading models\n")
        models = []
        for i, config in enumerate(configs):
            with tf.compat.v1.variable_scope("model%d" % i) as scope:
                if config.model_type == "transformer":
                    model = TransformerModel(
                        config, consts_config_str=settings.config_str)
                else:
                    model = rnn_model.RNNModel(config)
                model.sampling_utils = SamplingUtils(settings)
                models.append(model)
        # Add smoothing variables (if the models were trained with smoothing).
        # FIXME Assumes either all models were trained with smoothing or none were.
        if configs[0].exponential_smoothing > 0.0:
            smoothing = ExponentialSmoothing(configs[0].exponential_smoothing)

        # Restore the model variables.
        for i, config in enumerate(configs):
            with tf.compat.v1.variable_scope("model%d" % i) as scope:
                _ = model_loader.init_or_restore_variables(
                    config, session, ensemble_scope=scope)

        # Swap-in the smoothed versions of the variables.
        if configs[0].exponential_smoothing > 0.0:
            session.run(fetches=smoothing.swap_ops)

        max_translation_len = settings.translation_maxlen

        # Create a BeamSearchSampler / RandomSampler.
        if settings.translation_strategy == 'beam_search':
            sampler = BeamSearchSampler(models, configs, settings.beam_size)
        else:
            assert settings.translation_strategy == 'sampling'
            sampler = RandomSampler(models, configs, settings.beam_size)

        # Warn about the change from neg log probs to log probs for the RNN.
        if settings.n_best:
            model_types = [config.model_type for config in configs]
            if 'rnn' in model_types:
                logging.warn(
                    'n-best scores for RNN models have changed from '
                    'positive to negative (as of commit 95793196...). '
                    'If you are using the scores for reranking etc, then '
                    'you may need to update your scripts.')

        # Translate the source file.
        translate_utils.translate_file(
            input_file=settings.input,
            output_file=settings.output,
            session=session,
            sampler=sampler,
            config=configs[0],
            max_translation_len=max_translation_len,
            normalization_alpha=settings.normalization_alpha,
            consts_config_str=settings.config_str,
            nbest=settings.n_best,
            minibatch_size=settings.minibatch_size,
            maxibatch_size=settings.maxibatch_size)
Пример #4
0
def train(config, sess):
    assert (config.prior_model != None and (tf.train.checkpoint_exists(os.path.abspath(config.prior_model))) or (config.map_decay_c==0.0)), \
    "MAP training requires a prior model file: Use command-line option --prior_model"

    # Construct the graph, with one model replica per GPU

    num_gpus = len(tf_utils.get_available_gpus())
    num_replicas = max(1, num_gpus)

    if config.loss_function == 'MRT':
        assert config.gradient_aggregation_steps == 1
        assert config.max_sentences_per_device == 0, "MRT mode does not support sentence-based split"
        if config.max_tokens_per_device != 0:
            assert (config.samplesN * config.maxlen <= config.max_tokens_per_device), "need to make sure candidates of a sentence could be " \
                                                                                      "feed into the model"
        else:
            assert num_replicas == 1, "MRT mode does not support sentence-based split"
            assert (config.samplesN * config.maxlen <= config.token_batch_size), "need to make sure candidates of a sentence could be " \
                                                                                      "feed into the model"



    logging.info('Building model...')
    replicas = []
    for i in range(num_replicas):
        device_type = "GPU" if num_gpus > 0 else "CPU"
        device_spec = tf.DeviceSpec(device_type=device_type, device_index=i)
        with tf.device(device_spec):
            with tf.variable_scope(tf.get_variable_scope(), reuse=(i>0)):
                if config.model_type == "transformer":
                    model = TransformerModel(config)
                else:
                    model = rnn_model.RNNModel(config)
                replicas.append(model)

    init = tf.zeros_initializer(dtype=tf.int32)
    global_step = tf.get_variable('time', [], initializer=init, trainable=False)

    if config.learning_schedule == "constant":
        schedule = learning_schedule.ConstantSchedule(config.learning_rate)
    elif config.learning_schedule == "transformer":
        schedule = learning_schedule.TransformerSchedule(
            global_step=global_step,
            dim=config.state_size,
            warmup_steps=config.warmup_steps)
    elif config.learning_schedule == "warmup-plateau-decay":
        schedule = learning_schedule.WarmupPlateauDecaySchedule(
            global_step=global_step,
            peak_learning_rate=config.learning_rate,
            warmup_steps=config.warmup_steps,
            plateau_steps=config.plateau_steps)
    else:
        logging.error('Learning schedule type is not valid: {}'.format(
            config.learning_schedule))
        sys.exit(1)

    if config.optimizer == 'adam':
        optimizer = tf.train.AdamOptimizer(learning_rate=schedule.learning_rate,
                                           beta1=config.adam_beta1,
                                           beta2=config.adam_beta2,
                                           epsilon=config.adam_epsilon)
    else:
        logging.error('No valid optimizer defined: {}'.format(config.optimizer))
        sys.exit(1)

    if config.summary_freq:
        summary_dir = (config.summary_dir if config.summary_dir is not None
                       else os.path.abspath(os.path.dirname(config.saveto)))
        writer = tf.summary.FileWriter(summary_dir, sess.graph)
    else:
        writer = None

    updater = ModelUpdater(config, num_gpus, replicas, optimizer, global_step,
                           writer)

    if config.exponential_smoothing > 0.0:
        smoothing = ExponentialSmoothing(config.exponential_smoothing)

    saver, progress = model_loader.init_or_restore_variables(
        config, sess, train=True)

    global_step.load(progress.uidx, sess)

    if config.sample_freq:
        random_sampler = RandomSampler(
            models=[replicas[0]],
            configs=[config],
            beam_size=1)

    if config.beam_freq or config.valid_script is not None:
        beam_search_sampler = BeamSearchSampler(
            models=[replicas[0]],
            configs=[config],
            beam_size=config.beam_size)

    #save model options
    write_config_to_json_file(config, config.saveto)

    text_iterator, valid_text_iterator = load_data(config)
    _, _, num_to_source, num_to_target = util.load_dictionaries(config)
    total_loss = 0.
    n_sents, n_words = 0, 0
    last_time = time.time()
    logging.info("Initial uidx={}".format(progress.uidx))
    # set epoch = 1 if print per-token-probability
    if config.print_per_token_pro:
        config.max_epochs = progress.eidx+1
    for progress.eidx in range(progress.eidx, config.max_epochs):
        logging.info('Starting epoch {0}'.format(progress.eidx))
        for source_sents, target_sents in text_iterator:
            if len(source_sents[0][0]) != config.factors:
                logging.error('Mismatch between number of factors in settings ({0}), and number in training corpus ({1})\n'.format(config.factors, len(source_sents[0][0])))
                sys.exit(1)
            x_in, x_mask_in, y_in, y_mask_in = util.prepare_data(
                source_sents, target_sents, config.factors, maxlen=None)
            if x_in is None:
                logging.info('Minibatch with zero sample under length {0}'.format(config.maxlen))
                continue
            write_summary_for_this_batch = config.summary_freq and ((progress.uidx % config.summary_freq == 0) or (config.finish_after and progress.uidx % config.finish_after == 0))
            (factors, seqLen, batch_size) = x_in.shape

            output = updater.update(
                sess, x_in, x_mask_in, y_in, y_mask_in, num_to_target,
                write_summary_for_this_batch)

            if config.print_per_token_pro == False:
                total_loss += output
            else:
                # write per-token probability into the file
                f = open(config.print_per_token_pro, 'a')
                for pro in output:
                    pro = str(pro) + '\n'
                    f.write(pro)
                f.close()

            n_sents += batch_size
            n_words += int(numpy.sum(y_mask_in))
            progress.uidx += 1

            # Update the smoothed version of the model variables.
            # To reduce the performance overhead, we only do this once every
            # N steps (the smoothing factor is adjusted accordingly).
            if config.exponential_smoothing > 0.0 and progress.uidx % smoothing.update_frequency == 0:
                sess.run(fetches=smoothing.update_ops)

            if config.disp_freq and progress.uidx % config.disp_freq == 0:
                duration = time.time() - last_time
                disp_time = datetime.now().strftime('[%Y-%m-%d %H:%M:%S]')
                logging.info('{0} Epoch: {1} Update: {2} Loss/word: {3} Words/sec: {4} Sents/sec: {5}'.format(disp_time, progress.eidx, progress.uidx, total_loss/n_words, n_words/duration, n_sents/duration))
                last_time = time.time()
                total_loss = 0.
                n_sents = 0
                n_words = 0

            if config.sample_freq and progress.uidx % config.sample_freq == 0:
                x_small = x_in[:, :, :10]
                x_mask_small = x_mask_in[:, :10]
                y_small = y_in[:, :10]
                samples = translate_utils.translate_batch(
                    sess, random_sampler, x_small, x_mask_small,
                    config.translation_maxlen, 0.0)
                assert len(samples) == len(x_small.T) == len(y_small.T), \
                    (len(samples), x_small.shape, y_small.shape)
                for xx, yy, ss in zip(x_small.T, y_small.T, samples):
                    source = util.factoredseq2words(xx, num_to_source)
                    target = util.seq2words(yy, num_to_target)
                    sample = util.seq2words(ss[0][0], num_to_target)
                    logging.info('SOURCE: {}'.format(source))
                    logging.info('TARGET: {}'.format(target))
                    logging.info('SAMPLE: {}'.format(sample))

            if config.beam_freq and progress.uidx % config.beam_freq == 0:
                x_small = x_in[:, :, :10]
                x_mask_small = x_mask_in[:, :10]
                y_small = y_in[:,:10]
                samples = translate_utils.translate_batch(
                    sess, beam_search_sampler, x_small, x_mask_small,
                    config.translation_maxlen, config.normalization_alpha)
                assert len(samples) == len(x_small.T) == len(y_small.T), \
                    (len(samples), x_small.shape, y_small.shape)
                for xx, yy, ss in zip(x_small.T, y_small.T, samples):
                    source = util.factoredseq2words(xx, num_to_source)
                    target = util.seq2words(yy, num_to_target)
                    logging.info('SOURCE: {}'.format(source))
                    logging.info('TARGET: {}'.format(target))
                    for i, (sample_seq, cost) in enumerate(ss):
                        sample = util.seq2words(sample_seq, num_to_target)
                        msg = 'SAMPLE {}: {} Cost/Len/Avg {}/{}/{}'.format(
                            i, sample, cost, len(sample), cost/len(sample))
                        logging.info(msg)

            if config.valid_freq and progress.uidx % config.valid_freq == 0:
                if config.exponential_smoothing > 0.0:
                    sess.run(fetches=smoothing.swap_ops)
                    valid_ce = validate(sess, replicas[0], config,
                                        valid_text_iterator)
                    sess.run(fetches=smoothing.swap_ops)
                else:
                    valid_ce = validate(sess, replicas[0], config,
                                        valid_text_iterator)
                if (len(progress.history_errs) == 0 or
                    valid_ce < min(progress.history_errs)):
                    progress.history_errs.append(valid_ce)
                    progress.bad_counter = 0
                    save_non_checkpoint(sess, saver, config.saveto)
                    progress_path = '{0}.progress.json'.format(config.saveto)
                    progress.save_to_json(progress_path)
                else:
                    progress.history_errs.append(valid_ce)
                    progress.bad_counter += 1
                    if progress.bad_counter > config.patience:
                        logging.info('Early Stop!')
                        progress.estop = True
                        break
                if config.valid_script is not None:
                    if config.exponential_smoothing > 0.0:
                        sess.run(fetches=smoothing.swap_ops)
                        score = validate_with_script(sess, beam_search_sampler)
                        sess.run(fetches=smoothing.swap_ops)
                    else:
                        score = validate_with_script(sess, beam_search_sampler)
                    need_to_save = (score is not None and
                        (len(progress.valid_script_scores) == 0 or
                         score > max(progress.valid_script_scores)))
                    if score is None:
                        score = 0.0  # ensure a valid value is written
                    progress.valid_script_scores.append(score)
                    if need_to_save:
                        progress.bad_counter = 0
                        save_path = config.saveto + ".best-valid-script"
                        save_non_checkpoint(sess, saver, save_path)
                        write_config_to_json_file(config, save_path)

                        progress_path = '{}.progress.json'.format(save_path)
                        progress.save_to_json(progress_path)

            if config.save_freq and progress.uidx % config.save_freq == 0:
                saver.save(sess, save_path=config.saveto, global_step=progress.uidx)
                write_config_to_json_file(config, "%s-%s" % (config.saveto, progress.uidx))

                progress_path = '{0}-{1}.progress.json'.format(config.saveto, progress.uidx)
                progress.save_to_json(progress_path)

            if config.finish_after and progress.uidx % config.finish_after == 0:
                logging.info("Maximum number of updates reached")
                saver.save(sess, save_path=config.saveto, global_step=progress.uidx)
                write_config_to_json_file(config, "%s-%s" % (config.saveto, progress.uidx))

                progress.estop=True
                progress_path = '{0}-{1}.progress.json'.format(config.saveto, progress.uidx)
                progress.save_to_json(progress_path)
                break
        if progress.estop:
            break