def base_extend(self, S): r""" Returns the conic over ``S`` given by the same equation as ``self``. EXAMPLES:: sage: c = Conic([1, 1, 1]); c Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 sage: c.has_rational_point() False sage: d = c.base_extend(QuadraticField(-1, 'i')); d Projective Conic Curve over Number Field in i with defining polynomial x^2 + 1 defined by x^2 + y^2 + z^2 sage: d.rational_point(algorithm = 'rnfisnorm') (i : 1 : 0) """ if S in _Fields: B = self.base_ring() if B == S: return self if not S.has_coerce_map_from(B): raise ValueError, "No natural map from the base ring of self " \ "(= %s) to S (= %s)" % (self, S) from constructor import Conic con = Conic([S(c) for c in self.coefficients()], \ self.variable_names()) if self._rational_point != None: pt = [S(c) for c in Sequence(self._rational_point)] if not pt == [0,0,0]: # The following line stores the point in the cache # if (and only if) there is no point in the cache. pt = con.point(pt) return con return ProjectiveCurve_generic.base_extend(self, S)
def base_extend(self, S): r""" Returns the conic over ``S`` given by the same equation as ``self``. EXAMPLES:: sage: c = Conic([1, 1, 1]); c Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 sage: c.has_rational_point() False sage: d = c.base_extend(QuadraticField(-1, 'i')); d Projective Conic Curve over Number Field in i with defining polynomial x^2 + 1 defined by x^2 + y^2 + z^2 sage: d.rational_point(algorithm = 'rnfisnorm') (i : 1 : 0) """ if S in _Fields: B = self.base_ring() if B == S: return self if not S.has_coerce_map_from(B): raise ValueError("No natural map from the base ring of self " \ "(= %s) to S (= %s)" % (self, S)) from constructor import Conic con = Conic([S(c) for c in self.coefficients()], \ self.variable_names()) if self._rational_point is not None: pt = [S(c) for c in Sequence(self._rational_point)] if not pt == [0,0,0]: # The following line stores the point in the cache # if (and only if) there is no point in the cache. pt = con.point(pt) return con return ProjectiveCurve_generic.base_extend(self, S)
def diagonalization(self, names=None): r""" Returns a diagonal conic `C`, an isomorphism of schemes `M: C` -> ``self`` and the inverse `N` of `M`. EXAMPLES:: sage: Conic(GF(5), [1,0,1,1,0,1]).diagonalization() (Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2, Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 2*z : y : z), Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x - 2*z : y : z)) The diagonalization is only defined in characteristic different from 2: :: sage: Conic(GF(2), [1,1,1,1,1,0]).diagonalization() Traceback (most recent call last): ... ValueError: The conic self (= Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the base field has characteristic 2 An example over a global function field: :: sage: K = FractionField(PolynomialRing(GF(7), 't')) sage: (t,) = K.gens() sage: C = Conic(K, [t/2,0, 1, 2, 0, 3]) sage: C.diagonalization() (Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2, Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + x*z + 3*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 6/t*z : y : z), Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + x*z + 3*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 1/t*z : y : z)) """ if names is None: names = self.defining_polynomial().parent().variable_names() from constructor import Conic D, T = self.diagonal_matrix() con = Conic(D, names=names) return con, con.hom(T, self), self.hom(T.inverse(), con)
def diagonalization(self,names = None): r""" Returns a diagonal conic `C`, an isomorphism of schemes `M: C` -> ``self`` and the inverse `N` of `M`. EXAMPLES:: sage: Conic(GF(5), [1,0,1,1,0,1]).diagonalization() (Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2, Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 2*z : y : z), Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x - 2*z : y : z)) The diagonalization is only defined in characteristic different from 2: :: sage: Conic(GF(2), [1,1,1,1,1,0]).diagonalization() Traceback (most recent call last): ... ValueError: The conic self (= Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the base field has characteristic 2 """ if names == None: names = self.defining_polynomial().parent().variable_names() from constructor import Conic D, T = self.diagonal_matrix() con = Conic(D, names = names) return con, con.hom(T, self), self.hom(T.inverse(), con)
def diagonalization(self, names=None): r""" Returns a diagonal conic `C`, an isomorphism of schemes `M: C` -> ``self`` and the inverse `N` of `M`. EXAMPLES:: sage: Conic(GF(5), [1,0,1,1,0,1]).diagonalization() (Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2, Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 2*z : y : z), Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x - 2*z : y : z)) The diagonalization is only defined in characteristic different from 2: :: sage: Conic(GF(2), [1,1,1,1,1,0]).diagonalization() Traceback (most recent call last): ... ValueError: The conic self (= Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the base field has characteristic 2 """ if names == None: names = self.defining_polynomial().parent().variable_names() from constructor import Conic D, T = self.diagonal_matrix() con = Conic(D, names=names) return con, con.hom(T, self), self.hom(T.inverse(), con)
def hom(self, x, Y=None): r""" Return the scheme morphism from ``self`` to ``Y`` defined by ``x``. Here ``x`` can be a matrix or a sequence of polynomials. If ``Y`` is omitted, then a natural image is found if possible. EXAMPLES: Here are a few Morphisms given by matrices. In the first example, ``Y`` is omitted, in the second example, ``Y`` is specified. :: sage: c = Conic([-1, 1, 1]) sage: h = c.hom(Matrix([[1,1,0],[0,1,0],[0,0,1]])); h Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by -x^2 + 2*x*y + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + y : y : z) sage: h([-1, 1, 0]) (0 : 1 : 0) sage: c = Conic([-1, 1, 1]) sage: d = Conic([4, 1, -1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), d) Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by 4*x^2 + y^2 - z^2 Defn: Defined on coordinates by sending (x : y : z) to (1/2*z : y : x) ``ValueError`` is raised if the wrong codomain ``Y`` is specified: :: sage: c = Conic([-1, 1, 1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), c) Traceback (most recent call last): ... ValueError: The matrix x (= [ 0 0 1/2] [ 0 1 0] [ 1 0 0]) does not define a map from self (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) to Y (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) """ if is_Matrix(x): from constructor import Conic y = x.inverse() A = y.transpose()*self.matrix()*y im = Conic(A) if Y == None: Y = im else: q = Y.defining_polynomial()/im.defining_polynomial() if not (q.numerator().is_constant() and q.denominator().is_constant()): raise ValueError, "The matrix x (= %s) does not define a " \ "map from self (= %s) to Y (= %s)" % \ (x, self, Y) x = Sequence(x*vector(self.ambient_space().gens())) return self.Hom(Y)(x, check = False) return ProjectiveCurve_generic.hom(self, x, Y)
def hom(self, x, Y=None): r""" Return the scheme morphism from ``self`` to ``Y`` defined by ``x``. Here ``x`` can be a matrix or a sequence of polynomials. If ``Y`` is omitted, then a natural image is found if possible. EXAMPLES: Here are a few Morphisms given by matrices. In the first example, ``Y`` is omitted, in the second example, ``Y`` is specified. :: sage: c = Conic([-1, 1, 1]) sage: h = c.hom(Matrix([[1,1,0],[0,1,0],[0,0,1]])); h Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by -x^2 + 2*x*y + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + y : y : z) sage: h([-1, 1, 0]) (0 : 1 : 0) sage: c = Conic([-1, 1, 1]) sage: d = Conic([4, 1, -1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), d) Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by 4*x^2 + y^2 - z^2 Defn: Defined on coordinates by sending (x : y : z) to (1/2*z : y : x) ``ValueError`` is raised if the wrong codomain ``Y`` is specified: :: sage: c = Conic([-1, 1, 1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), c) Traceback (most recent call last): ... ValueError: The matrix x (= [ 0 0 1/2] [ 0 1 0] [ 1 0 0]) does not define a map from self (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) to Y (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) """ if is_Matrix(x): from constructor import Conic y = x.inverse() A = y.transpose()*self.matrix()*y im = Conic(A) if Y is None: Y = im else: q = Y.defining_polynomial()/im.defining_polynomial() if not (q.numerator().is_constant() and q.denominator().is_constant()): raise ValueError("The matrix x (= %s) does not define a " \ "map from self (= %s) to Y (= %s)" % \ (x, self, Y)) x = Sequence(x*vector(self.ambient_space().gens())) return self.Hom(Y)(x, check = False) return ProjectiveCurve_generic.hom(self, x, Y)
def hom(self, x, Y=None): r""" Return the scheme morphism from ``self`` to ``Y`` defined by ``x``. Here ``x`` can be a matrix or a sequence of polynomials. If ``Y`` is omitted, then a natural image is found if possible. EXAMPLES: Here are a few Morphisms given by matrices. In the first example, ``Y`` is omitted, in the second example, ``Y`` is specified. :: sage: c = Conic([-1, 1, 1]) sage: h = c.hom(Matrix([[1,1,0],[0,1,0],[0,0,1]])); h Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by -x^2 + 2*x*y + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + y : y : z) sage: h([-1, 1, 0]) (0 : 1 : 0) sage: c = Conic([-1, 1, 1]) sage: d = Conic([4, 1, -1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), d) Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by 4*x^2 + y^2 - z^2 Defn: Defined on coordinates by sending (x : y : z) to (1/2*z : y : x) ``ValueError`` is raised if the wrong codomain ``Y`` is specified: :: sage: c = Conic([-1, 1, 1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), c) Traceback (most recent call last): ... ValueError: The matrix x (= [ 0 0 1/2] [ 0 1 0] [ 1 0 0]) does not define a map from self (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) to Y (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) The identity map between two representations of the same conic: :: sage: C = Conic([1,2,3,4,5,6]) sage: D = Conic([2,4,6,8,10,12]) sage: C.hom(identity_matrix(3), D) Scheme morphism: From: Projective Conic Curve over Rational Field defined by x^2 + 2*x*y + 4*y^2 + 3*x*z + 5*y*z + 6*z^2 To: Projective Conic Curve over Rational Field defined by 2*x^2 + 4*x*y + 8*y^2 + 6*x*z + 10*y*z + 12*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x : y : z) An example not over the rational numbers: :: sage: P.<t> = QQ[] sage: C = Conic([1,0,0,t,0,1/t]) sage: D = Conic([1/t^2, 0, -2/t^2, t, 0, (t + 1)/t^2]) sage: T = Matrix([[t,0,1],[0,1,0],[0,0,1]]) sage: C.hom(T, D) Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Rational Field defined by x^2 + t*y^2 + 1/t*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Rational Field defined by 1/t^2*x^2 + t*y^2 + (-2/t^2)*x*z + ((t + 1)/t^2)*z^2 Defn: Defined on coordinates by sending (x : y : z) to (t*x + z : y : z) """ if is_Matrix(x): from constructor import Conic y = x.inverse() A = y.transpose() * self.matrix() * y im = Conic(A) if Y is None: Y = im elif not Y == im: raise ValueError("The matrix x (= %s) does not define a " \ "map from self (= %s) to Y (= %s)" % \ (x, self, Y)) x = Sequence(x * vector(self.ambient_space().gens())) return self.Hom(Y)(x, check=False) return ProjectiveCurve_generic.hom(self, x, Y)
def has_rational_point(self, point = False, algorithm = 'default', read_cache = True): r""" Returns True if and only if the conic ``self`` has a point over its base field `F(t)`, which is a field of rational functions. If ``point`` is True, then returns a second output, which is a rational point if one exists. Points are cached whenever they are found. Cached information is used if and only if ``read_cache`` is True. The default algorithm does not (yet) work for all base fields `F`. In particular, sage is required to have: * an algorithm for finding the square root of elements in finite extensions of `F`; * a factorization and gcd algorithm for `F[t]`; * an algorithm for solving conics over `F`. ALGORITHM: The parameter ``algorithm`` specifies the algorithm to be used: * ``'default'`` -- use a native Sage implementation, based on the algorithm Conic in [HC2006]_. * ``'magma'`` (requires Magma to be installed) -- delegates the task to the Magma computer algebra system. EXAMPLES: We can find points for function fields over (extensions of) `\QQ` and finite fields:: sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) sage: C = Conic(K, [t^2-2, 2*t^3, -2*t^3-13*t^2-2*t+18]) sage: C.has_rational_point(point=True) (True, (-3 : (t + 1)/t : 1)) sage: R.<t> = FiniteField(23)[] sage: C = Conic([2, t^2+1, t^2+5]) sage: C.has_rational_point() True sage: C.has_rational_point(point=True) (True, (5*t : 8 : 1)) sage: F.<i> = QuadraticField(-1) sage: R.<t> = F[] sage: C = Conic([1,i*t,-t^2+4]) sage: C.has_rational_point(point = True) verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation. ... (True, (-t - 2*i : -2*i : 1)) It works on non-diagonal conics as well:: sage: K.<t> = QQ[] sage: C = Conic([4, -4, 8, 1, -4, t + 4]) sage: C.has_rational_point(point=True) (True, (1/2 : 1 : 0)) If no point exists output still depends on the argument ``point``:: sage: K.<t> = QQ[] sage: C = Conic(K, [t^2, (t-1), -2*(t-1)]) sage: C.has_rational_point() False sage: C.has_rational_point(point=True) (False, None) Due to limitations in Sage of algorithms we depend on, it is not yet possible to find points on conics over multivariate function fields (see the requirements above):: sage: F.<t1> = FractionField(QQ['t1']) sage: K.<t2> = FractionField(F['t2']) sage: a = K(1) sage: b = 2*t2^2+2*t1*t2-t1^2 sage: c = -3*t2^4-4*t1*t2^3+8*t1^2*t2^2+16*t1^3-t2-48*t1^4 sage: C = Conic([a,b,c]) sage: C.has_rational_point() ... Traceback (most recent call last): ... NotImplementedError: is_square() not implemented for elements of Univariate Quotient Polynomial Ring in tbar over Fraction Field of Univariate Polynomial Ring in t1 over Rational Field with modulus tbar^2 + t1*tbar - 1/2*t1^2 In some cases, the algorithm requires us to be able to solve conics over `F`. In particular, the following does not work:: sage: P.<u> = QQ[] sage: E = P.fraction_field() sage: Q.<Y> = E[] sage: F.<v> = E.extension(Y^2 - u^3 - 1) sage: R.<t> = F[] sage: K = R.fraction_field() sage: C = Conic(K, [u, v, 1]) sage: C.has_rational_point() ... Traceback (most recent call last): ... NotImplementedError: has_rational_point not implemented for conics over base field Univariate Quotient Polynomial Ring in v over Fraction Field of Univariate Polynomial Ring in u over Rational Field with modulus v^2 - u^3 - 1 ``has_rational_point`` fails for some conics over function fields over finite fields, due to :trac:`20003`:: sage: K.<t> = PolynomialRing(GF(7)) sage: C = Conic([5*t^2+4, t^2+3*t+3, 6*t^2+3*t+2, 5*t^2+5, 4*t+3, 4*t^2+t+5]) sage: C.has_rational_point() ... Traceback (most recent call last): ... TypeError: self (=Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5*t^2 + 4)*x^2 + ((6*t^3 + 3*t^2 + 5*t + 5)/(t + 3))*y^2 + ((6*t^6 + 3*t^5 + t^3 + 6*t^2 + 6*t + 2)/(t^4 + t^3 + 4*t^2 + 3*t + 1))*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5*t^2 + 4)*x^2 + (t^2 + 3*t + 3)*x*y + (5*t^2 + 5)*y^2 + (6*t^2 + 3*t + 2)*x*z + (4*t + 3)*y*z + (4*t^2 + t + 5)*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + ((2*t + 5)/(t + 3))*y + ((3*t^4 + 2*t^3 + 5*t^2 + 5*t + 3)/(t^4 + t^3 + 4*t^2 + 3*t + 1))*z : y + ((6*t^3 + 6*t^2 + 3*t + 6)/(t^3 + 4*t^2 + 2*t + 2))*z : z)) domain must equal right (=Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5*t^3 + 6*t^2 + 3*t + 3)*x^2 + (t + 4)*y^2 + (6*t^7 + 2*t^5 + t^4 + 2*t^3 + 3*t^2 + 6*t + 6)*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5/(t^3 + 4*t^2 + 2*t + 2))*x^2 + (1/(t^3 + 3*t^2 + 5*t + 1))*y^2 + ((6*t^6 + 3*t^5 + t^3 + 6*t^2 + 6*t + 2)/(t^9 + 5*t^8 + t^7 + 6*t^6 + 3*t^5 + 4*t^3 + t^2 + 5*t + 3))*z^2 Defn: Defined on coordinates by sending (x : y : z) to ((t^3 + 4*t^2 + 2*t + 2)*x : (t^2 + 5)*y : (t^5 + 4*t^4 + t^2 + 3*t + 3)*z)) codomain TESTS:: sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) sage: a = (2*t^2 - 3/2*t + 1)/(37/3*t^2 + t - 1/4) sage: b = (1/2*t^2 + 1/3)/(-73*t^2 - 2*t + 11/4) sage: c = (6934/3*t^6 + 8798/3*t^5 - 947/18*t^4 + 3949/9*t^3 + 20983/18*t^2 + 28/3*t - 131/3)/(-2701/3*t^4 - 293/3*t^3 + 301/6*t^2 + 13/4*t - 11/16) sage: C = Conic([a,b,c]) sage: C.has_rational_point(point=True) (True, (4*t + 4 : 2*t + 2 : 1)) A long time test:: sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) sage: a = (-1/3*t^6 - 14*t^5 - 1/4*t^4 + 7/2*t^2 - 1/2*t - 1)/(24/5*t^6 - t^5 - 1/4*t^4 + t^3 - 3*t^2 + 8/5*t + 5) sage: b = (-3*t^3 + 8*t + 1/2)/(-1/3*t^3 + 3/2*t^2 + 1/12*t + 1/2) sage: c = (1232009/225*t^25 - 1015925057/8100*t^24 + 1035477411553/1458000*t^23 + 7901338091/30375*t^22 - 1421379260447/729000*t^21 + 266121260843/972000*t^20 + 80808723191/486000*t^19 - 516656082523/972000*t^18 + 21521589529/40500*t^17 + 4654758997/21600*t^16 - 20064038625227/9720000*t^15 - 173054270347/324000*t^14 + 536200870559/540000*t^13 - 12710739349/50625*t^12 - 197968226971/135000*t^11 - 134122025657/810000*t^10 + 22685316301/120000*t^9 - 2230847689/21600*t^8 - 70624099679/270000*t^7 - 4298763061/270000*t^6 - 41239/216000*t^5 - 13523/36000*t^4 + 493/36000*t^3 + 83/2400*t^2 + 1/300*t + 1/200)/(-27378/125*t^17 + 504387/500*t^16 - 97911/2000*t^15 + 1023531/4000*t^14 + 1874841/8000*t^13 + 865381/12000*t^12 + 15287/375*t^11 + 6039821/6000*t^10 + 599437/1500*t^9 + 18659/250*t^8 + 1218059/6000*t^7 + 2025127/3000*t^6 + 1222759/6000*t^5 + 38573/200*t^4 + 8323/125*t^3 + 15453/125*t^2 + 17031/500*t + 441/10) sage: C = Conic([a,b,c]) sage: C.has_rational_point(point = True) # long time (4 seconds) (True, ((-2/117*t^8 + 304/1053*t^7 + 40/117*t^6 - 1/27*t^5 - 110/351*t^4 - 2/195*t^3 + 11/351*t^2 + 1/117)/(t^4 + 2/39*t^3 + 4/117*t^2 + 2/39*t + 14/39) : -5/3*t^4 + 19*t^3 : 1)) """ from constructor import Conic if read_cache: if self._rational_point is not None: return (True, self._rational_point) if point else True if algorithm != 'default': return ProjectiveConic_field.has_rational_point(self, point, algorithm, read_cache) # Default algorithm if self.base_ring().characteristic() == 2: raise NotImplementedError("has_rational_point not implemented \ for function field of characteristic 2.") new_conic, transformation, inverse = self.diagonalization() coeff = new_conic.coefficients() if coeff[0] == 0: return (True, transformation([1,0,0])) if point else True elif coeff[3] == 0: return (True, transformation([0,1,0])) if point else True elif coeff[5] == 0: return (True, transformation([0,0,1])) if point else True # We save the coefficients of the reduced form in coeff # A zero of the reduced conic can be multiplied by multipliers # to get a zero of the old conic (coeff, multipliers) = new_conic._reduce_conic() new_conic = Conic(coeff) transformation = transformation \ * new_conic.hom(diagonal_matrix(multipliers)) if coeff[0].degree() % 2 == coeff[1].degree() % 2 and \ coeff[1].degree() % 2 == coeff[2].degree() % 2: case = 0 else: case = 1 t, = self.base_ring().base().gens() # t in F[t] supp = [] roots = [[], [], []] remove = None # loop through the coefficients and find a root of f_i (as in # [HC2006]) modulo each element in the coefficients' support for i in (0,1,2): supp.append(list(coeff[i].factor())) for p in supp[i]: if p[1] != 1: raise ValueError("Expected factor of exponent 1.") # Convert to monic factor x = p[0]/list(p[0])[-1] N = p[0].base_ring().extension(x, 'tbar') R = PolynomialRing(N, 'u') u, = R.gens() # If p[0] has degree 1, sage might forget the "defining # polynomial" of N, so we define our own modulo operation if p[0].degree() == 1: mod = t.parent().hom([-x[0]]) else: mod = N if i == 0: x = -mod(coeff[2])/mod(coeff[1]) elif i == 1: x = -mod(coeff[0])/mod(coeff[2]) else: x = -mod(coeff[1])/mod(coeff[0]) if x.is_square(): root = N(x.sqrt()) else: return (False, None) if point else False # if case == 0 and p[0] has degree 1, we switch to case # 1 and remove this factor out of the support. In [HC2006] # this is done later, in FindPoint. if case == 0 and p[0].degree() == 1: case = 1 # remove later so the loop iterator stays in place. remove = (i,p) else: roots[i].append(root) if remove: supp[remove[0]].remove(remove[1]) supp = [[p[0] for p in supp[i]] for i in (0,1,2)] if case == 0: # Find a solution of (5) in [HC2006] leading_conic = Conic(self.base_ring().base_ring(), [coeff[0].leading_coefficient(), coeff[1].leading_coefficient(), coeff[2].leading_coefficient()]) has_point = leading_conic.has_rational_point(True) if has_point[0]: if point: pt = new_conic.find_point(supp, roots, case, has_point[1]) else: pt = True return (True, transformation(pt)) if point else True else: return (False, None) if point else False # case == 1: if point: pt = new_conic.find_point(supp, roots, case) else: pt = True return (True, transformation(pt)) if point else True
def has_rational_point(self, point = False, algorithm = 'default', read_cache = True): r""" Returns True if and only if the conic ``self`` has a point over its base field `F(t)`, which is a field of rational functions. If ``point`` is True, then returns a second output, which is a rational point if one exists. Points are cached whenever they are found. Cached information is used if and only if ``read_cache`` is True. The default algorithm does not (yet) work for all base fields `F`. In particular, sage is required to have: * an algorithm for finding the square root of elements in finite extensions of `F`; * a factorization and gcd algorithm for `F[t]`; * an algorithm for solving conics over `F`. ALGORITHM: The parameter ``algorithm`` specifies the algorithm to be used: * ``'default'`` -- use a native Sage implementation, based on the algorithm Conic in [HC2006]_. * ``'magma'`` (requires Magma to be installed) -- delegates the task to the Magma computer algebra system. EXAMPLES: We can find points for function fields over (extensions of) `\QQ` and finite fields:: sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) sage: C = Conic(K, [t^2-2, 2*t^3, -2*t^3-13*t^2-2*t+18]) sage: C.has_rational_point(point=True) (True, (-3 : (t + 1)/t : 1)) sage: R.<t> = FiniteField(23)[] sage: C = Conic([2, t^2+1, t^2+5]) sage: C.has_rational_point() True sage: C.has_rational_point(point=True) (True, (5*t : 8 : 1)) sage: F.<i> = QuadraticField(-1) sage: R.<t> = F[] sage: C = Conic([1,i*t,-t^2+4]) sage: C.has_rational_point(point = True) verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning: falling back to very slow toy implementation. ... (True, (-t - 2*i : -2*i : 1)) It works on non-diagonal conics as well:: sage: K.<t> = QQ[] sage: C = Conic([4, -4, 8, 1, -4, t + 4]) sage: C.has_rational_point(point=True) (True, (1/2 : 1 : 0)) If no point exists output still depends on the argument ``point``:: sage: K.<t> = QQ[] sage: C = Conic(K, [t^2, (t-1), -2*(t-1)]) sage: C.has_rational_point() False sage: C.has_rational_point(point=True) (False, None) Due to limitations in Sage of algorithms we depend on, it is not yet possible to find points on conics over multivariate function fields (see the requirements above):: sage: F.<t1> = FractionField(QQ['t1']) sage: K.<t2> = FractionField(F['t2']) sage: a = K(1) sage: b = 2*t2^2+2*t1*t2-t1^2 sage: c = -3*t2^4-4*t1*t2^3+8*t1^2*t2^2+16*t1^3-t2-48*t1^4 sage: C = Conic([a,b,c]) sage: C.has_rational_point() ... Traceback (most recent call last): ... NotImplementedError: is_square() not implemented for elements of Univariate Quotient Polynomial Ring in tbar over Fraction Field of Univariate Polynomial Ring in t1 over Rational Field with modulus tbar^2 + t1*tbar - 1/2*t1^2 In some cases, the algorithm requires us to be able to solve conics over `F`. In particular, the following does not work:: sage: P.<u> = QQ[] sage: E = P.fraction_field() sage: Q.<Y> = E[] sage: F.<v> = E.extension(Y^2 - u^3 - 1) sage: R.<t> = F[] sage: K = R.fraction_field() sage: C = Conic(K, [u, v, 1]) sage: C.has_rational_point() ... Traceback (most recent call last): ... NotImplementedError: has_rational_point not implemented for conics over base field Univariate Quotient Polynomial Ring in v over Fraction Field of Univariate Polynomial Ring in u over Rational Field with modulus v^2 - u^3 - 1 ``has_rational_point`` fails for some conics over function fields over finite fields, due to :trac:`20003`:: sage: K.<t> = PolynomialRing(GF(7)) sage: C = Conic([5*t^2+4, t^2+3*t+3, 6*t^2+3*t+2, 5*t^2+5, 4*t+3, 4*t^2+t+5]) sage: C.has_rational_point() ... Traceback (most recent call last): ... TypeError: self (=Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5*t^2 + 4)*x^2 + ((6*t^3 + 3*t^2 + 5*t + 5)/(t + 3))*y^2 + ((6*t^6 + 3*t^5 + t^3 + 6*t^2 + 6*t + 2)/(t^4 + t^3 + 4*t^2 + 3*t + 1))*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5*t^2 + 4)*x^2 + (t^2 + 3*t + 3)*x*y + (5*t^2 + 5)*y^2 + (6*t^2 + 3*t + 2)*x*z + (4*t + 3)*y*z + (4*t^2 + t + 5)*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + ((2*t + 5)/(t + 3))*y + ((3*t^4 + 2*t^3 + 5*t^2 + 5*t + 3)/(t^4 + t^3 + 4*t^2 + 3*t + 1))*z : y + ((6*t^3 + 6*t^2 + 3*t + 6)/(t^3 + 4*t^2 + 2*t + 2))*z : z)) domain must equal right (=Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5*t^3 + 6*t^2 + 3*t + 3)*x^2 + (t + 4)*y^2 + (6*t^7 + 2*t^5 + t^4 + 2*t^3 + 3*t^2 + 6*t + 6)*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by (5/(t^3 + 4*t^2 + 2*t + 2))*x^2 + (1/(t^3 + 3*t^2 + 5*t + 1))*y^2 + ((6*t^6 + 3*t^5 + t^3 + 6*t^2 + 6*t + 2)/(t^9 + 5*t^8 + t^7 + 6*t^6 + 3*t^5 + 4*t^3 + t^2 + 5*t + 3))*z^2 Defn: Defined on coordinates by sending (x : y : z) to ((t^3 + 4*t^2 + 2*t + 2)*x : (t^2 + 5)*y : (t^5 + 4*t^4 + t^2 + 3*t + 3)*z)) codomain TESTS:: sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) sage: a = (2*t^2 - 3/2*t + 1)/(37/3*t^2 + t - 1/4) sage: b = (1/2*t^2 + 1/3)/(-73*t^2 - 2*t + 11/4) sage: c = (6934/3*t^6 + 8798/3*t^5 - 947/18*t^4 + 3949/9*t^3 + 20983/18*t^2 + 28/3*t - 131/3)/(-2701/3*t^4 - 293/3*t^3 + 301/6*t^2 + 13/4*t - 11/16) sage: C = Conic([a,b,c]) sage: C.has_rational_point(point=True) (True, (4*t + 4 : 2*t + 2 : 1)) A long time test:: sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) sage: a = (-1/3*t^6 - 14*t^5 - 1/4*t^4 + 7/2*t^2 - 1/2*t - 1)/(24/5*t^6 - t^5 - 1/4*t^4 + t^3 - 3*t^2 + 8/5*t + 5) sage: b = (-3*t^3 + 8*t + 1/2)/(-1/3*t^3 + 3/2*t^2 + 1/12*t + 1/2) sage: c = (1232009/225*t^25 - 1015925057/8100*t^24 + 1035477411553/1458000*t^23 + 7901338091/30375*t^22 - 1421379260447/729000*t^21 + 266121260843/972000*t^20 + 80808723191/486000*t^19 - 516656082523/972000*t^18 + 21521589529/40500*t^17 + 4654758997/21600*t^16 - 20064038625227/9720000*t^15 - 173054270347/324000*t^14 + 536200870559/540000*t^13 - 12710739349/50625*t^12 - 197968226971/135000*t^11 - 134122025657/810000*t^10 + 22685316301/120000*t^9 - 2230847689/21600*t^8 - 70624099679/270000*t^7 - 4298763061/270000*t^6 - 41239/216000*t^5 - 13523/36000*t^4 + 493/36000*t^3 + 83/2400*t^2 + 1/300*t + 1/200)/(-27378/125*t^17 + 504387/500*t^16 - 97911/2000*t^15 + 1023531/4000*t^14 + 1874841/8000*t^13 + 865381/12000*t^12 + 15287/375*t^11 + 6039821/6000*t^10 + 599437/1500*t^9 + 18659/250*t^8 + 1218059/6000*t^7 + 2025127/3000*t^6 + 1222759/6000*t^5 + 38573/200*t^4 + 8323/125*t^3 + 15453/125*t^2 + 17031/500*t + 441/10) sage: C = Conic([a,b,c]) sage: C.has_rational_point(point = True) # long time (4 seconds) (True, ((-2/117*t^8 + 304/1053*t^7 + 40/117*t^6 - 1/27*t^5 - 110/351*t^4 - 2/195*t^3 + 11/351*t^2 + 1/117)/(t^4 + 2/39*t^3 + 4/117*t^2 + 2/39*t + 14/39) : -5/3*t^4 + 19*t^3 : 1)) """ from constructor import Conic if read_cache: if self._rational_point is not None: return (True, self._rational_point) if point else True if algorithm != 'default': return ProjectiveConic_field.has_rational_point(self, point, algorithm, read_cache) # Default algorithm if self.base_ring().characteristic() == 2: raise NotImplementedError("has_rational_point not implemented \ for function field of characteristic 2.") new_conic, transformation, inverse = self.diagonalization() coeff = new_conic.coefficients() if coeff[0] == 0: return (True, transformation([1,0,0])) if point else True elif coeff[3] == 0: return (True, transformation([0,1,0])) if point else True elif coeff[5] == 0: return (True, transformation([0,0,1])) if point else True # We save the coefficients of the reduced form in coeff # A zero of the reduced conic can be multiplied by multipliers # to get a zero of the old conic (coeff, multipliers) = new_conic._reduce_conic() new_conic = Conic(coeff) transformation = transformation \ * new_conic.hom(diagonal_matrix(multipliers)) if coeff[0].degree() % 2 == coeff[1].degree() % 2 and \ coeff[1].degree() % 2 == coeff[2].degree() % 2: case = 0
# 1 and remove this factor out of the support. In [HC2006] # this is done later, in FindPoint. if case == 0 and p[0].degree() == 1: case = 1 # remove later so the loop iterator stays in place. remove = (i,p) else: roots[i].append(root) if remove: supp[remove[0]].remove(remove[1]) supp = [[p[0] for p in supp[i]] for i in (0,1,2)] if case == 0: # Find a solution of (5) in [HC2006] leading_conic = Conic(self.base_ring().base_ring(), [coeff[0].leading_coefficient(), coeff[1].leading_coefficient(), coeff[2].leading_coefficient()]) has_point = leading_conic.has_rational_point(True) if has_point[0]: if point: pt = new_conic.find_point(supp, roots, case, has_point[1]) else: pt = True return (True, transformation(pt)) if point else True else: return (False, None) if point else False # case == 1: if point: pt = new_conic.find_point(supp, roots, case) else: