def _init_controller(self, opt_dict): """ Controller initialization. :param opt_dict: dictionary of arguments. :return: """ # default params self._dt = 1.0 / 20.0 self._default_target_speed = 20.0 # Km/h self._target_speed = 20.0 # Km/h self._sampling_radius = self._target_speed * 1 / 3.6 # 1 seconds horizon self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE args_lateral_dict = { 'K_P': 1.95, 'K_D': 0.01, 'K_I': 1.4, 'dt': self._dt } args_longitudinal_dict = { 'K_P': 1.0, 'K_D': 0, 'K_I': 1, 'dt': self._dt } # parameters overload if opt_dict: if 'dt' in opt_dict: self._dt = opt_dict['dt'] if 'target_speed' in opt_dict: self._target_speed = opt_dict['target_speed'] if 'sampling_radius' in opt_dict: self._sampling_radius = self._target_speed * \ opt_dict['sampling_radius'] / 3.6 if 'lateral_control_dict' in opt_dict: args_lateral_dict = opt_dict['lateral_control_dict'] if 'longitudinal_control_dict' in opt_dict: args_longitudinal_dict = opt_dict['longitudinal_control_dict'] self._current_waypoint = self._map.get_waypoint( self._vehicle.get_location()) self._vehicle_controller = VehiclePIDController( self._vehicle, args_lateral=args_lateral_dict, args_longitudinal=args_longitudinal_dict) self._global_plan = False # compute initial waypoints self._waypoints_queue.append( (self._current_waypoint.next(self._sampling_radius)[0], RoadOption.LANEFOLLOW)) self._target_road_option = RoadOption.LANEFOLLOW # fill waypoint trajectory queue self._compute_next_waypoints(k=200)
def _init_controller(self, opt_dict): # default params self._dt = 1.0 / 20.0 # self._switch_timestep = 0 self._target_speed = 20.0 # Km/h self._sampling_radius = self._target_speed * 1 / 3.6 # 1 seconds horizon self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE args_lateral_dict = { 'K_P': 0.5, # Keyur: 0.5 Local_planner: 1.95 Traffic_manager: 10 'K_D': 0, # Keyur: 0.01 Local_planner: 0.2 Traffic_manager: 0 'K_I': 0.1, # Keyur: 1.4 Local_planner: 0.07 Traffic_manager: 0.1 'dt': self._dt } args_longitudinal_dict = { 'K_P': 0.1, # Keyur: 1.0 Local_planner: 1.0 Traffic_manager: 5.0 'K_D': 0.15, # Keyur: 0 Local_planner: 0 Traffic_manager: 0 'K_I': 0.01, # Keyur: 1 Local_planner: 0.05 Traffic_manager: 0.1 'dt': self._dt } # parameters overload if opt_dict: if 'dt' in opt_dict: self._dt = opt_dict['dt'] if 'target_speed' in opt_dict: self._target_speed = opt_dict['target_speed'] if 'sampling_radius' in opt_dict: self._sampling_radius = self._target_speed * \ opt_dict['sampling_radius'] / 3.6 if 'lateral_control_dict' in opt_dict: args_lateral_dict = opt_dict['lateral_control_dict'] if 'longitudinal_control_dict' in opt_dict: args_longitudinal_dict = opt_dict['longitudinal_control_dict'] self._current_waypoint = self._map.get_waypoint( self._vehicle.get_location()) self._vehicle_controller = VehiclePIDController( self._vehicle, args_lateral=args_lateral_dict, args_longitudinal=args_longitudinal_dict) # compute initial waypoints self._waypoints_queue.append( (self._current_waypoint.next(self._sampling_radius)[0], RoadOption.LANEFOLLOW)) self._target_road_option = RoadOption.LANEFOLLOW # fill waypoint trajectory queue self._compute_next_waypoints(k=200)
class LocalPlanner(object): """ LocalPlanner implements the basic behavior of following a trajectory of waypoints that is generated on-the-fly. The low-level motion of the vehicle is computed by using two PID controllers, one is used for the lateral control and the other for the longitudinal control (cruise speed). When multiple paths are available (intersections) this local planner makes a random choice. """ # minimum distance to target waypoint as a percentage (e.g. within 90% of # total distance) MIN_DISTANCE_PERCENTAGE = 0.9 def __init__(self, vehicle, opt_dict=None): """ :param vehicle: actor to apply to local planner logic onto :param opt_dict: dictionary of arguments with the following semantics: dt -- time difference between physics control in seconds. This is typically fixed from server side using the arguments -benchmark -fps=F . In this case dt = 1/F target_speed -- desired cruise speed in Km/h sampling_radius -- search radius for next waypoints in seconds: e.g. 0.5 seconds ahead lateral_control_dict -- dictionary of arguments to setup the lateral PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} longitudinal_control_dict -- dictionary of arguments to setup the longitudinal PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} """ self._vehicle = vehicle self._map = self._vehicle.get_world().get_map() self._dt = None self._target_speed = None self._sampling_radius = None self._min_distance = None self._current_waypoint = None self._target_road_option = None self._next_waypoints = None self.target_waypoint = None self._vehicle_controller = None self._global_plan = None # queue with tuples of (waypoint, RoadOption) self._waypoints_queue = deque(maxlen=20000) self._buffer_size = 5 self._waypoint_buffer = deque(maxlen=self._buffer_size) # initializing controller self._init_controller(opt_dict) def __del__(self): if self._vehicle: self._vehicle.destroy() print("Destroying ego-vehicle!") def reset_vehicle(self): self._vehicle = None print("Resetting ego-vehicle!") def _init_controller(self, opt_dict): """ Controller initialization. :param opt_dict: dictionary of arguments. :return: """ # default params self._dt = 1.0 / 20.0 self._default_target_speed = 20.0 # Km/h self._target_speed = 20.0 # Km/h self._sampling_radius = self._target_speed * 1 / 3.6 # 1 seconds horizon self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE args_lateral_dict = { 'K_P': 1.95, 'K_D': 0.01, 'K_I': 1.4, 'dt': self._dt } args_longitudinal_dict = { 'K_P': 1.0, 'K_D': 0, 'K_I': 1, 'dt': self._dt } # parameters overload if opt_dict: if 'dt' in opt_dict: self._dt = opt_dict['dt'] if 'target_speed' in opt_dict: self._target_speed = opt_dict['target_speed'] if 'sampling_radius' in opt_dict: self._sampling_radius = self._target_speed * \ opt_dict['sampling_radius'] / 3.6 if 'lateral_control_dict' in opt_dict: args_lateral_dict = opt_dict['lateral_control_dict'] if 'longitudinal_control_dict' in opt_dict: args_longitudinal_dict = opt_dict['longitudinal_control_dict'] self._current_waypoint = self._map.get_waypoint( self._vehicle.get_location()) self._vehicle_controller = VehiclePIDController( self._vehicle, args_lateral=args_lateral_dict, args_longitudinal=args_longitudinal_dict) self._global_plan = False # compute initial waypoints self._waypoints_queue.append( (self._current_waypoint.next(self._sampling_radius)[0], RoadOption.LANEFOLLOW)) self._target_road_option = RoadOption.LANEFOLLOW # fill waypoint trajectory queue self._compute_next_waypoints(k=200) def set_speed(self, speed): """ Request new target speed. :param speed: new target speed in Km/h :return: """ self._target_speed = speed def _compute_next_waypoints(self, k=1): """ Add new waypoints to the trajectory queue. :param k: how many waypoints to compute :return: """ # check we do not overflow the queue available_entries = self._waypoints_queue.maxlen - len( self._waypoints_queue) k = min(available_entries, k) for _ in range(k): last_waypoint = self._waypoints_queue[-1][0] next_waypoints = list(last_waypoint.next(self._sampling_radius)) if len(next_waypoints) == 1: # only one option available ==> lanefollowing next_waypoint = next_waypoints[0] road_option = RoadOption.LANEFOLLOW else: # random choice between the possible options road_options_list = _retrieve_options(next_waypoints, last_waypoint) road_option = random.choice(road_options_list) next_waypoint = next_waypoints[road_options_list.index( road_option)] self._waypoints_queue.append((next_waypoint, road_option)) def set_global_plan(self, current_plan): self._waypoints_queue.clear() for elem in current_plan: self._waypoints_queue.append(elem) self._target_road_option = RoadOption.LANEFOLLOW self._global_plan = True def get_target_waypoint(self, debug=False): # not enough waypoints in the horizon? => add more! if not self._global_plan and len(self._waypoints_queue) < int( self._waypoints_queue.maxlen * 0.5): self._compute_next_waypoints(k=100) if len(self._waypoints_queue) == 0: return None # Buffering the waypoints if not self._waypoint_buffer: for i in range(self._buffer_size): if self._waypoints_queue: self._waypoint_buffer.append( self._waypoints_queue.popleft()) else: break # current vehicle waypoint self._current_waypoint = self._map.get_waypoint( self._vehicle.get_location()) # target waypoint print('_waypoints_queue, _waypoint_buffer', len(self._waypoints_queue), len(self._waypoint_buffer)) self.target_waypoint, self._target_road_option = self._waypoint_buffer[ 0] # purge the queue of obsolete waypoints vehicle_transform = self._vehicle.get_transform() max_index = -1 for i, (waypoint, _) in enumerate(self._waypoint_buffer): if distance_vehicle(waypoint, vehicle_transform) < self._min_distance: max_index = i if max_index >= 0: for i in range(max_index + 1): self._waypoint_buffer.popleft() if debug: draw_waypoints(self._vehicle.get_world(), [self.target_waypoint], self._vehicle.get_location().z + 1.0) return self.target_waypoint def run_step(self, relative_angle, target_speed): """ Execute one step of local planning which involves running the longitudinal and lateral PID controllers to follow the waypoints trajectory. :param :return: """ # move using PID controllers control = self._vehicle_controller.run_step(target_speed, relative_angle) return control def done(self): vehicle_transform = self._vehicle.get_transform() return len(self._waypoints_queue) == 0 and all([ distance_vehicle(wp, vehicle_transform) < self._min_distance for wp in self._waypoints_queue ])
class PathPlanner(object): """ PathPlanner implements the basic behavior of following a trajectory of waypoints that is generated on-the-fly. """ # minimum distance to target waypoint as a percentage (e.g. within 90% of # total distance) MIN_DISTANCE_PERCENTAGE = 0.9 def __init__(self, vehicle, opt_dict=None): """ :param vehicle: actor to apply to local planner logic onto :param opt_dict: dictionary of arguments with the following semantics: dt -- time difference between physics control in seconds. This is typically fixed from server side using the arguments -benchmark -fps=F . In this case dt = 1/F target_speed -- desired cruise speed in Km/h sampling_radius -- search radius for next waypoints in seconds: e.g. 0.5 seconds ahead lateral_control_dict -- dictionary of arguments to setup the lateral PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} longitudinal_control_dict -- dictionary of arguments to setup the longitudinal PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} """ self._vehicle = vehicle self._map = self._vehicle.get_world().get_map() self._dt = None self._target_speed = None self._sampling_radius = None self._min_distance = None self._current_waypoint = None self._target_road_option = None self.target_waypoint = None self._vehicle_controller = None # course charted by path planner # contains tuples of (waypoint, RoadOption) self._waypoints_queue = deque(maxlen=20000) self._buffer_size = 5 # immediate next few waypoints in the planned path (helpful for # controllers like MPC which use the next SEVERAL reference positions) # In our case, PID only uses the next SINGLE waypoint so it's unused self._waypoint_buffer = deque(maxlen=self._buffer_size) # initializing controller self._init_controller(opt_dict) def __del__(self): if self._vehicle: self._vehicle.destroy() print("Destroying ego-vehicle!") def reset_vehicle(self): self._vehicle = None print("Resetting ego-vehicle!") def _init_controller(self, opt_dict): # default params self._dt = 1.0 / 20.0 # self._switch_timestep = 0 self._target_speed = 20.0 # Km/h self._sampling_radius = self._target_speed * 1 / 3.6 # 1 seconds horizon self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE args_lateral_dict = { 'K_P': 0.5, # Keyur: 0.5 Local_planner: 1.95 Traffic_manager: 10 'K_D': 0, # Keyur: 0.01 Local_planner: 0.2 Traffic_manager: 0 'K_I': 0.1, # Keyur: 1.4 Local_planner: 0.07 Traffic_manager: 0.1 'dt': self._dt } args_longitudinal_dict = { 'K_P': 0.1, # Keyur: 1.0 Local_planner: 1.0 Traffic_manager: 5.0 'K_D': 0.15, # Keyur: 0 Local_planner: 0 Traffic_manager: 0 'K_I': 0.01, # Keyur: 1 Local_planner: 0.05 Traffic_manager: 0.1 'dt': self._dt } # parameters overload if opt_dict: if 'dt' in opt_dict: self._dt = opt_dict['dt'] if 'target_speed' in opt_dict: self._target_speed = opt_dict['target_speed'] if 'sampling_radius' in opt_dict: self._sampling_radius = self._target_speed * \ opt_dict['sampling_radius'] / 3.6 if 'lateral_control_dict' in opt_dict: args_lateral_dict = opt_dict['lateral_control_dict'] if 'longitudinal_control_dict' in opt_dict: args_longitudinal_dict = opt_dict['longitudinal_control_dict'] self._current_waypoint = self._map.get_waypoint( self._vehicle.get_location()) self._vehicle_controller = VehiclePIDController( self._vehicle, args_lateral=args_lateral_dict, args_longitudinal=args_longitudinal_dict) # compute initial waypoints self._waypoints_queue.append( (self._current_waypoint.next(self._sampling_radius)[0], RoadOption.LANEFOLLOW)) self._target_road_option = RoadOption.LANEFOLLOW # fill waypoint trajectory queue self._compute_next_waypoints(k=200) def set_lane_left(self, distance_ahead, debug=True): current_waypoint = self._map.get_waypoint(self._vehicle.get_location()) left_waypt = current_waypoint.get_left_lane() self._waypoint_buffer.clear() self._waypoints_queue.clear() self._waypoints_queue.append( (left_waypt.next(distance_ahead)[0], RoadOption.CHANGELANELEFT)) if debug: print('Ego', self._vehicle.id, 'CHANGE LEFT from lane', current_waypoint.lane_id, 'into', left_waypt.lane_id) def set_lane_right(self, distance_ahead, debug=True): current_waypoint = self._map.get_waypoint(self._vehicle.get_location()) right_waypt = current_waypoint.get_right_lane() self._waypoint_buffer.clear() self._waypoints_queue.clear() self._waypoints_queue.append( (right_waypt.next(distance_ahead)[0], RoadOption.CHANGELANERIGHT)) if debug: print('Ego', self._vehicle.id, 'CHANGE RIGHT from lane', current_waypoint.lane_id, 'into', right_waypt.lane_id) def set_lane_origin(self, distance_ahead, debug=True): current_waypoint = self._map.get_waypoint(self._vehicle.get_location()) self._waypoint_buffer.clear() self._waypoints_queue.clear() self._waypoints_queue.append( (current_waypoint.next(distance_ahead)[0], RoadOption.LANEFOLLOW)) if debug: print('Ego', self._vehicle.id, 'Set back to the original lane to avoid collisions', current_waypoint.lane_id) def set_speed(self, speed): self._target_speed = speed def _compute_next_waypoints(self, k=1): # Adds k new waypoints to queue # check we do not overflow the queue available_entries = self._waypoints_queue.maxlen - len( self._waypoints_queue) k = min(available_entries, k) for _ in range(k): last_waypoint = self._waypoints_queue[-1][0] next_waypoints = list(last_waypoint.next(self._sampling_radius)) if len(next_waypoints) == 0: # fixes a bug # DEBUG: break elif len(next_waypoints) == 1: # only one option available ==> lanefollowing next_waypoint = next_waypoints[0] road_option = RoadOption.LANEFOLLOW else: road_options_list = _retrieve_options(next_waypoints, last_waypoint) road_option = RoadOption.STRAIGHT if RoadOption.STRAIGHT in road_options_list else random.choice( road_options_list) next_waypoint = next_waypoints[road_options_list.index( road_option)] self._waypoints_queue.append((next_waypoint, road_option)) def run_step(self, debug=False): # not enough waypoints in the horizon? => add more! if len(self._waypoints_queue) < int( self._waypoints_queue.maxlen * 0.5): self._compute_next_waypoints(k=100) if len(self._waypoints_queue) == 0 and len(self._waypoint_buffer) == 0: control = carla.VehicleControl() control.steer = 0.0 control.throttle = 0.0 control.brake = 1.0 control.hand_brake = False control.manual_gear_shift = False return control # Buffering the first few waypoints if not self._waypoint_buffer: for i in range(self._buffer_size): if self._waypoints_queue: self._waypoint_buffer.append( self._waypoints_queue.popleft()) else: break # current vehicle waypoint vehicle_transform = self._vehicle.get_transform() self._current_waypoint = self._map.get_waypoint( vehicle_transform.location) # target waypoint self.target_waypoint, self._target_road_option = self._waypoint_buffer[ 0] # move using PID controllers control = self._vehicle_controller.run_step(self._target_speed, self.target_waypoint) # purge the queue of obsolete waypoints max_index = -1 for i, (waypoint, _) in enumerate(self._waypoint_buffer): if waypoint.transform.location.distance( vehicle_transform.location) < self._min_distance: max_index = i if max_index >= 0: for i in range(max_index + 1): self._waypoint_buffer.popleft() if debug: draw_waypoints(self._vehicle.get_world(), [self.target_waypoint], self._vehicle.get_location().z + 1.0) return control
def Control(self): rate = rospy.Rate(10) lon_param = { 'K_P': 0.5, 'K_I': 0.5, 'K_D': 0 } # Set PID values for longitudinal controller lat_param = { 'K_P': 0.5, 'K_I': 0.3, 'K_D': 0 } # Set PID values for lateral controller vehicle_controller = VehiclePIDController( self.vehicle, lon_param, lat_param) # Calling vehicle controller class from controller.py i = 0 for k in range(1, len(self.current_route) ): # Iterate through all the waypoints in the route self.Distance(self.current_route[i][0], self.veh_pos.transform) self.Waypoints() rospy.Subscriber( '/machine_learning/output', Int16, self.Detection ) # Subscribes to topic for Stop sign detection. Need to run carla_detect_objects.py script to obtain detection while self.distance > 0.5: # Control the vehicle until the distance of the next waypoint and the vehicle is less than 0.5 m self.Actor( ) # Call Actor function to update vehicle's location control = vehicle_controller.run_step( 15, self.current_route[i] [0]) # Feeds the controller the waypoints one by one self.velocity = self.vehicle.get_velocity( ) # Get vehicle velocity if self.detection == 11: # Stop sign detection(apply brakes). Our ML has a class ID of 11 for stop signs print('Object detected, apply brakes') msg = CarlaEgoVehicleControl( ) # Ego vehicle's control message msg.throttle = 0 msg.steer = control.steer msg.brake = 1 msg.hand_brake = control.hand_brake msg.reverse = control.reverse msg.gear = 1 msg.manual_gear_shift = control.manual_gear_shift self.detection = None elif len(self.current_route) - 5 <= k <= len( self.current_route ): # If the ith waypoint is between the last waypoint minus five apply brakes msg = CarlaEgoVehicleControl() msg.throttle = 0 msg.steer = control.steer msg.brake = 1 msg.hand_brake = control.hand_brake msg.reverse = control.reverse msg.gear = 1 msg.manual_gear_shift = control.manual_gear_shift print('You arrived to your destination!!') else: # If neither scenario happen, keep driving msg = CarlaEgoVehicleControl() msg.throttle = control.throttle msg.steer = control.steer msg.brake = control.brake msg.hand_brake = control.hand_brake msg.reverse = control.reverse msg.gear = 1 msg.manual_gear_shift = control.manual_gear_shift self.Publisher(msg) rate.sleep() self.Distance( self.current_route[i][0], self.veh_pos.transform ) # Calculates the Euclidean distance between the vehicle and the next waypoint in every iteration i += 1
class LocalPlanner(object): """ This class implements the basic behavior of following a trajectory of waypoints that is generated on-the-fly. The low-level motion of the vehicle is computed by using two PID controllers, one is used for the lateral control and the other for the longitudinal control (cruise speed). When multiple paths are available (intersections) this local planner makes a random choice. """ # minimum distance to target waypoint as a percentage (e.g. within 90% of the total distance) MIN_DISTANCE_PERCENTAGE = 0.9 def __init__(self, vehicle, opt_dict=None): """ Constructor for LocalPlanner Class :param vehicle: actor to apply to local planner logic onto :param opt_dict: dictionary of arguments with the following semantics: dt -- time difference between physics control in seconds. This is typically fixed from server side using the arguments -benchmark -fps=F . In this case dt = 1/F target_speed -- desired cruise speed in Km/h sampling_radius -- search radius for next waypoints in seconds: e.g. 0.5 seconds ahead lateral_control_dict -- dictionary of arguments to setup the lateral PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} longitudinal_control_dict -- dictionary of arguments to setup the longitudinal PID controller {'K_P':, 'K_D':, 'K_I':, 'dt'} """ self._vehicle = vehicle self._map = self._vehicle.get_world().get_map() self._dt = None self._target_speed = None self._sampling_radius = None self._min_distance = None self._current_waypoint = None self._target_road_option = None self._next_waypoints = None self.target_waypoint = None self._vehicle_controller = None self._global_plan = None # queue with tuples of (waypoint, RoadOption) self._waypoints_queue = deque(maxlen=20000) self._buffer_size = 5 self._waypoint_buffer = deque(maxlen=self._buffer_size) # initializing controller self._init_controller(opt_dict) def __del__(self): """ Destructor for LocalPlanner Class :return: """ if self._vehicle: self._vehicle.destroy() print("Destroying ego-vehicle!") def reset_vehicle(self): self._vehicle = None print("Resetting ego-vehicle!") def set_speed(self, speed): """ Function used to request new target speed. :param speed: new target speed in Km/h :return: """ self._target_speed = speed def _init_controller(self, opt_dict): """ Private function used for controller initialization. :param opt_dict: dictionary of arguments. :return: """ # default params self._dt = 1.0 / 20.0 self._target_speed = 20.0 # Km/h self._sampling_radius = self._target_speed * 1 / 3.6 # 1 seconds horizon self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE args_lateral_dict = { 'K_P': 1.95, 'K_D': 0.01, 'K_I': 1.4, 'dt': self._dt } args_longitudinal_dict = { 'K_P': 1.0, 'K_D': 0, 'K_I': 1, 'dt': self._dt } # parameters overload if opt_dict: if 'dt' in opt_dict: self._dt = opt_dict['dt'] if 'target_speed' in opt_dict: self._target_speed = opt_dict['target_speed'] if 'sampling_radius' in opt_dict: self._sampling_radius = self._target_speed * opt_dict[ 'sampling_radius'] / 3.6 if 'lateral_control_dict' in opt_dict: args_lateral_dict = opt_dict['lateral_control_dict'] if 'longitudinal_control_dict' in opt_dict: args_longitudinal_dict = opt_dict['longitudinal_control_dict'] self._current_waypoint = self._map.get_waypoint( self._vehicle.get_location()) self._vehicle_controller = VehiclePIDController( self._vehicle, args_lateral=args_lateral_dict, args_longitudinal=args_longitudinal_dict) self._global_plan = False # compute initial waypoints self._waypoints_queue.append( (self._current_waypoint.next(self._sampling_radius)[0], RoadOption.LANEFOLLOW)) self._target_road_option = RoadOption.LANEFOLLOW # fill waypoint trajectory queue self._compute_next_waypoints(k=200) def _compute_connection(self, current_waypoint, next_waypoint): """ Private function used to compute the type of topological connection between an active waypoint (current_waypoint) and a target waypoint(next_waypoint). :param current_waypoint: active waypoint :param next_waypoint: target waypoint :return: the type of topological connection encoded as a RoadOption enum: RoadOption.STRAIGHT RoadOption.LEFT RoadOption.RIGHT """ n = next_waypoint.transform.rotation.yaw n = n % 360.0 c = current_waypoint.transform.rotation.yaw c = c % 360.0 diff_angle = (n - c) % 180.0 if diff_angle < 1.0: return RoadOption.STRAIGHT elif diff_angle > 90.0: return RoadOption.LEFT else: return RoadOption.RIGHT def _retrieve_options(self, list_waypoints, current_waypoint): """ Private function used to compute the type of connection between the current active waypoint and the multiple waypoints present in list_waypoints. The result is encoded as a list of RoadOption enums. :param list_waypoints: list with the possible target waypoints in case of multiple options :param current_waypoint: current active waypoint :return: list of RoadOption enums representing the type of connection from the active waypoint to each candidate in list_waypoints """ options = [] for next_waypoint in list_waypoints: # this is needed because something we are linking to # the beggining of an intersection, therefore the # variation in angle is small next_next_waypoint = next_waypoint.next(3.0)[0] link = self._compute_connection(current_waypoint, next_next_waypoint) options.append(link) return options def _compute_next_waypoints(self, k=1): """ Private function used to add new waypoints to the trajectory queue. :param k: how many waypoints to compute :return: """ # check we do not overflow the queue available_entries = self._waypoints_queue.maxlen - len( self._waypoints_queue) k = min(available_entries, k) for _ in range(k): last_waypoint = self._waypoints_queue[-1][0] next_waypoints = list(last_waypoint.next(self._sampling_radius)) if len(next_waypoints) == 1: # only one option available ==> lanefollowing next_waypoint = next_waypoints[0] road_option = RoadOption.LANEFOLLOW else: # random choice between the possible options road_options_list = self._retrieve_options( next_waypoints, last_waypoint) road_option = random.choice(road_options_list) next_waypoint = next_waypoints[road_options_list.index( road_option)] self._waypoints_queue.append((next_waypoint, road_option)) def set_global_plan(self, current_plan): """ Function used to set global plan for vehicle :param current_plan: current plan data :return: """ self._waypoints_queue.clear() for elem in current_plan: self._waypoints_queue.append(elem) self._target_road_option = RoadOption.LANEFOLLOW self._global_plan = True def run_step(self, debug=True): """ Function used to execute one step of local planning which involves running the longitudinal and lateral PID controllers tofollow the waypoints trajectory. :param debug: boolean flag to activate waypoints debugging :return: """ # not enough waypoints in the horizon? => add more! if not self._global_plan and len(self._waypoints_queue) < int( self._waypoints_queue.maxlen * 0.5): self._compute_next_waypoints(k=100) if len(self._waypoints_queue) == 0: control = carla.VehicleControl() control.steer = 0.0 control.throttle = 0.0 control.brake = 1.0 control.hand_brake = False control.manual_gear_shift = False return control # Buffering the waypoints if not self._waypoint_buffer: for i in range(self._buffer_size): if self._waypoints_queue: self._waypoint_buffer.append( self._waypoints_queue.popleft()) else: break # current vehicle waypoint self._current_waypoint = self._map.get_waypoint( self._vehicle.get_location()) # target waypoint self.target_waypoint, self._target_road_option = self._waypoint_buffer[ 0] # move using PID controllers control = self._vehicle_controller.run_step(self._target_speed, self.target_waypoint) # purge the queue of obsolete waypoints vehicle_transform = self._vehicle.get_transform() max_index = -1 for i, (waypoint, _) in enumerate(self._waypoint_buffer): if distance_vehicle(waypoint, vehicle_transform) < self._min_distance: max_index = i if max_index >= 0: for i in range(max_index + 1): self._waypoint_buffer.popleft() if debug: draw_waypoints(self._vehicle.get_world(), [self.target_waypoint], self._vehicle.get_location().z + 1.0) return control