示例#1
0
    def _init_controller(self, opt_dict):
        """
        Controller initialization.

        :param opt_dict: dictionary of arguments.
        :return:
        """
        # default params
        self._dt = 1.0 / 20.0
        self._default_target_speed = 20.0  # Km/h
        self._target_speed = 20.0  # Km/h
        self._sampling_radius = self._target_speed * 1 / 3.6  # 1 seconds horizon
        self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE
        args_lateral_dict = {
            'K_P': 1.95,
            'K_D': 0.01,
            'K_I': 1.4,
            'dt': self._dt
        }
        args_longitudinal_dict = {
            'K_P': 1.0,
            'K_D': 0,
            'K_I': 1,
            'dt': self._dt
        }

        # parameters overload
        if opt_dict:
            if 'dt' in opt_dict:
                self._dt = opt_dict['dt']
            if 'target_speed' in opt_dict:
                self._target_speed = opt_dict['target_speed']
            if 'sampling_radius' in opt_dict:
                self._sampling_radius = self._target_speed * \
                                        opt_dict['sampling_radius'] / 3.6
            if 'lateral_control_dict' in opt_dict:
                args_lateral_dict = opt_dict['lateral_control_dict']
            if 'longitudinal_control_dict' in opt_dict:
                args_longitudinal_dict = opt_dict['longitudinal_control_dict']

        self._current_waypoint = self._map.get_waypoint(
            self._vehicle.get_location())
        self._vehicle_controller = VehiclePIDController(
            self._vehicle,
            args_lateral=args_lateral_dict,
            args_longitudinal=args_longitudinal_dict)

        self._global_plan = False

        # compute initial waypoints
        self._waypoints_queue.append(
            (self._current_waypoint.next(self._sampling_radius)[0],
             RoadOption.LANEFOLLOW))

        self._target_road_option = RoadOption.LANEFOLLOW
        # fill waypoint trajectory queue
        self._compute_next_waypoints(k=200)
示例#2
0
    def _init_controller(self, opt_dict):
        # default params
        self._dt = 1.0 / 20.0
        # self._switch_timestep = 0
        self._target_speed = 20.0  # Km/h
        self._sampling_radius = self._target_speed * 1 / 3.6  # 1 seconds horizon
        self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE
        args_lateral_dict = {
            'K_P': 0.5,  # Keyur: 0.5  Local_planner: 1.95  Traffic_manager: 10
            'K_D': 0,  # Keyur: 0.01  Local_planner: 0.2  Traffic_manager: 0
            'K_I':
            0.1,  # Keyur: 1.4  Local_planner: 0.07  Traffic_manager: 0.1
            'dt': self._dt
        }
        args_longitudinal_dict = {
            'K_P': 0.1,  # Keyur: 1.0  Local_planner: 1.0  Traffic_manager: 5.0
            'K_D': 0.15,  # Keyur: 0  Local_planner: 0  Traffic_manager: 0
            'K_I': 0.01,  # Keyur: 1  Local_planner: 0.05  Traffic_manager: 0.1
            'dt': self._dt
        }

        # parameters overload
        if opt_dict:
            if 'dt' in opt_dict:
                self._dt = opt_dict['dt']
            if 'target_speed' in opt_dict:
                self._target_speed = opt_dict['target_speed']
            if 'sampling_radius' in opt_dict:
                self._sampling_radius = self._target_speed * \
                                        opt_dict['sampling_radius'] / 3.6
            if 'lateral_control_dict' in opt_dict:
                args_lateral_dict = opt_dict['lateral_control_dict']
            if 'longitudinal_control_dict' in opt_dict:
                args_longitudinal_dict = opt_dict['longitudinal_control_dict']

        self._current_waypoint = self._map.get_waypoint(
            self._vehicle.get_location())
        self._vehicle_controller = VehiclePIDController(
            self._vehicle,
            args_lateral=args_lateral_dict,
            args_longitudinal=args_longitudinal_dict)

        # compute initial waypoints
        self._waypoints_queue.append(
            (self._current_waypoint.next(self._sampling_radius)[0],
             RoadOption.LANEFOLLOW))

        self._target_road_option = RoadOption.LANEFOLLOW
        # fill waypoint trajectory queue
        self._compute_next_waypoints(k=200)
示例#3
0
class LocalPlanner(object):
    """
    LocalPlanner implements the basic behavior of following a trajectory of waypoints that is generated on-the-fly.
    The low-level motion of the vehicle is computed by using two PID controllers, one is used for the lateral control
    and the other for the longitudinal control (cruise speed).

    When multiple paths are available (intersections) this local planner makes a random choice.
    """

    # minimum distance to target waypoint as a percentage (e.g. within 90% of
    # total distance)
    MIN_DISTANCE_PERCENTAGE = 0.9

    def __init__(self, vehicle, opt_dict=None):
        """
        :param vehicle: actor to apply to local planner logic onto
        :param opt_dict: dictionary of arguments with the following semantics:
            dt -- time difference between physics control in seconds. This is typically fixed from server side
                  using the arguments -benchmark -fps=F . In this case dt = 1/F

            target_speed -- desired cruise speed in Km/h

            sampling_radius -- search radius for next waypoints in seconds: e.g. 0.5 seconds ahead

            lateral_control_dict -- dictionary of arguments to setup the lateral PID controller
                                    {'K_P':, 'K_D':, 'K_I':, 'dt'}

            longitudinal_control_dict -- dictionary of arguments to setup the longitudinal PID controller
                                        {'K_P':, 'K_D':, 'K_I':, 'dt'}
        """
        self._vehicle = vehicle
        self._map = self._vehicle.get_world().get_map()

        self._dt = None
        self._target_speed = None
        self._sampling_radius = None
        self._min_distance = None
        self._current_waypoint = None
        self._target_road_option = None
        self._next_waypoints = None
        self.target_waypoint = None
        self._vehicle_controller = None
        self._global_plan = None
        # queue with tuples of (waypoint, RoadOption)
        self._waypoints_queue = deque(maxlen=20000)
        self._buffer_size = 5
        self._waypoint_buffer = deque(maxlen=self._buffer_size)

        # initializing controller
        self._init_controller(opt_dict)

    def __del__(self):
        if self._vehicle:
            self._vehicle.destroy()
        print("Destroying ego-vehicle!")

    def reset_vehicle(self):
        self._vehicle = None
        print("Resetting ego-vehicle!")

    def _init_controller(self, opt_dict):
        """
        Controller initialization.

        :param opt_dict: dictionary of arguments.
        :return:
        """
        # default params
        self._dt = 1.0 / 20.0
        self._default_target_speed = 20.0  # Km/h
        self._target_speed = 20.0  # Km/h
        self._sampling_radius = self._target_speed * 1 / 3.6  # 1 seconds horizon
        self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE
        args_lateral_dict = {
            'K_P': 1.95,
            'K_D': 0.01,
            'K_I': 1.4,
            'dt': self._dt
        }
        args_longitudinal_dict = {
            'K_P': 1.0,
            'K_D': 0,
            'K_I': 1,
            'dt': self._dt
        }

        # parameters overload
        if opt_dict:
            if 'dt' in opt_dict:
                self._dt = opt_dict['dt']
            if 'target_speed' in opt_dict:
                self._target_speed = opt_dict['target_speed']
            if 'sampling_radius' in opt_dict:
                self._sampling_radius = self._target_speed * \
                                        opt_dict['sampling_radius'] / 3.6
            if 'lateral_control_dict' in opt_dict:
                args_lateral_dict = opt_dict['lateral_control_dict']
            if 'longitudinal_control_dict' in opt_dict:
                args_longitudinal_dict = opt_dict['longitudinal_control_dict']

        self._current_waypoint = self._map.get_waypoint(
            self._vehicle.get_location())
        self._vehicle_controller = VehiclePIDController(
            self._vehicle,
            args_lateral=args_lateral_dict,
            args_longitudinal=args_longitudinal_dict)

        self._global_plan = False

        # compute initial waypoints
        self._waypoints_queue.append(
            (self._current_waypoint.next(self._sampling_radius)[0],
             RoadOption.LANEFOLLOW))

        self._target_road_option = RoadOption.LANEFOLLOW
        # fill waypoint trajectory queue
        self._compute_next_waypoints(k=200)

    def set_speed(self, speed):
        """
        Request new target speed.

        :param speed: new target speed in Km/h
        :return:
        """
        self._target_speed = speed

    def _compute_next_waypoints(self, k=1):
        """
        Add new waypoints to the trajectory queue.

        :param k: how many waypoints to compute
        :return:
        """
        # check we do not overflow the queue
        available_entries = self._waypoints_queue.maxlen - len(
            self._waypoints_queue)
        k = min(available_entries, k)

        for _ in range(k):
            last_waypoint = self._waypoints_queue[-1][0]
            next_waypoints = list(last_waypoint.next(self._sampling_radius))

            if len(next_waypoints) == 1:
                # only one option available ==> lanefollowing
                next_waypoint = next_waypoints[0]
                road_option = RoadOption.LANEFOLLOW
            else:
                # random choice between the possible options
                road_options_list = _retrieve_options(next_waypoints,
                                                      last_waypoint)
                road_option = random.choice(road_options_list)
                next_waypoint = next_waypoints[road_options_list.index(
                    road_option)]

            self._waypoints_queue.append((next_waypoint, road_option))

    def set_global_plan(self, current_plan):
        self._waypoints_queue.clear()
        for elem in current_plan:
            self._waypoints_queue.append(elem)
        self._target_road_option = RoadOption.LANEFOLLOW
        self._global_plan = True

    def get_target_waypoint(self, debug=False):

        # not enough waypoints in the horizon? => add more!
        if not self._global_plan and len(self._waypoints_queue) < int(
                self._waypoints_queue.maxlen * 0.5):
            self._compute_next_waypoints(k=100)

        if len(self._waypoints_queue) == 0:
            return None

        #   Buffering the waypoints
        if not self._waypoint_buffer:
            for i in range(self._buffer_size):
                if self._waypoints_queue:
                    self._waypoint_buffer.append(
                        self._waypoints_queue.popleft())
                else:
                    break

        # current vehicle waypoint
        self._current_waypoint = self._map.get_waypoint(
            self._vehicle.get_location())
        # target waypoint
        print('_waypoints_queue, _waypoint_buffer', len(self._waypoints_queue),
              len(self._waypoint_buffer))
        self.target_waypoint, self._target_road_option = self._waypoint_buffer[
            0]

        # purge the queue of obsolete waypoints
        vehicle_transform = self._vehicle.get_transform()
        max_index = -1

        for i, (waypoint, _) in enumerate(self._waypoint_buffer):
            if distance_vehicle(waypoint,
                                vehicle_transform) < self._min_distance:
                max_index = i
        if max_index >= 0:
            for i in range(max_index + 1):
                self._waypoint_buffer.popleft()

        if debug:
            draw_waypoints(self._vehicle.get_world(), [self.target_waypoint],
                           self._vehicle.get_location().z + 1.0)

        return self.target_waypoint

    def run_step(self, relative_angle, target_speed):
        """
        Execute one step of local planning which involves running the longitudinal and lateral PID controllers to
        follow the waypoints trajectory.

        :param
        :return:
        """

        # move using PID controllers
        control = self._vehicle_controller.run_step(target_speed,
                                                    relative_angle)

        return control

    def done(self):
        vehicle_transform = self._vehicle.get_transform()
        return len(self._waypoints_queue) == 0 and all([
            distance_vehicle(wp, vehicle_transform) < self._min_distance
            for wp in self._waypoints_queue
        ])
示例#4
0
class PathPlanner(object):
    """
    PathPlanner implements the basic behavior of following a trajectory of waypoints that is generated on-the-fly.
    """

    # minimum distance to target waypoint as a percentage (e.g. within 90% of
    # total distance)
    MIN_DISTANCE_PERCENTAGE = 0.9

    def __init__(self, vehicle, opt_dict=None):
        """
        :param vehicle: actor to apply to local planner logic onto
        :param opt_dict: dictionary of arguments with the following semantics:
            dt -- time difference between physics control in seconds. This is typically fixed from server side
                  using the arguments -benchmark -fps=F . In this case dt = 1/F
            target_speed -- desired cruise speed in Km/h
            sampling_radius -- search radius for next waypoints in seconds: e.g. 0.5 seconds ahead
            lateral_control_dict -- dictionary of arguments to setup the lateral PID controller
                                    {'K_P':, 'K_D':, 'K_I':, 'dt'}
            longitudinal_control_dict -- dictionary of arguments to setup the longitudinal PID controller
                                        {'K_P':, 'K_D':, 'K_I':, 'dt'}
        """
        self._vehicle = vehicle
        self._map = self._vehicle.get_world().get_map()

        self._dt = None
        self._target_speed = None
        self._sampling_radius = None
        self._min_distance = None
        self._current_waypoint = None
        self._target_road_option = None
        self.target_waypoint = None
        self._vehicle_controller = None

        # course charted by path planner
        # contains tuples of (waypoint, RoadOption)
        self._waypoints_queue = deque(maxlen=20000)
        self._buffer_size = 5
        # immediate next few waypoints in the planned path (helpful for
        # controllers like MPC which use the next SEVERAL reference positions)
        # In our case, PID only uses the next SINGLE waypoint so it's unused
        self._waypoint_buffer = deque(maxlen=self._buffer_size)

        # initializing controller
        self._init_controller(opt_dict)

    def __del__(self):
        if self._vehicle:
            self._vehicle.destroy()
        print("Destroying ego-vehicle!")

    def reset_vehicle(self):
        self._vehicle = None
        print("Resetting ego-vehicle!")

    def _init_controller(self, opt_dict):
        # default params
        self._dt = 1.0 / 20.0
        # self._switch_timestep = 0
        self._target_speed = 20.0  # Km/h
        self._sampling_radius = self._target_speed * 1 / 3.6  # 1 seconds horizon
        self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE
        args_lateral_dict = {
            'K_P': 0.5,  # Keyur: 0.5  Local_planner: 1.95  Traffic_manager: 10
            'K_D': 0,  # Keyur: 0.01  Local_planner: 0.2  Traffic_manager: 0
            'K_I':
            0.1,  # Keyur: 1.4  Local_planner: 0.07  Traffic_manager: 0.1
            'dt': self._dt
        }
        args_longitudinal_dict = {
            'K_P': 0.1,  # Keyur: 1.0  Local_planner: 1.0  Traffic_manager: 5.0
            'K_D': 0.15,  # Keyur: 0  Local_planner: 0  Traffic_manager: 0
            'K_I': 0.01,  # Keyur: 1  Local_planner: 0.05  Traffic_manager: 0.1
            'dt': self._dt
        }

        # parameters overload
        if opt_dict:
            if 'dt' in opt_dict:
                self._dt = opt_dict['dt']
            if 'target_speed' in opt_dict:
                self._target_speed = opt_dict['target_speed']
            if 'sampling_radius' in opt_dict:
                self._sampling_radius = self._target_speed * \
                                        opt_dict['sampling_radius'] / 3.6
            if 'lateral_control_dict' in opt_dict:
                args_lateral_dict = opt_dict['lateral_control_dict']
            if 'longitudinal_control_dict' in opt_dict:
                args_longitudinal_dict = opt_dict['longitudinal_control_dict']

        self._current_waypoint = self._map.get_waypoint(
            self._vehicle.get_location())
        self._vehicle_controller = VehiclePIDController(
            self._vehicle,
            args_lateral=args_lateral_dict,
            args_longitudinal=args_longitudinal_dict)

        # compute initial waypoints
        self._waypoints_queue.append(
            (self._current_waypoint.next(self._sampling_radius)[0],
             RoadOption.LANEFOLLOW))

        self._target_road_option = RoadOption.LANEFOLLOW
        # fill waypoint trajectory queue
        self._compute_next_waypoints(k=200)

    def set_lane_left(self, distance_ahead, debug=True):
        current_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        left_waypt = current_waypoint.get_left_lane()

        self._waypoint_buffer.clear()
        self._waypoints_queue.clear()
        self._waypoints_queue.append(
            (left_waypt.next(distance_ahead)[0], RoadOption.CHANGELANELEFT))
        if debug:
            print('Ego', self._vehicle.id, 'CHANGE LEFT from lane',
                  current_waypoint.lane_id, 'into', left_waypt.lane_id)

    def set_lane_right(self, distance_ahead, debug=True):
        current_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        right_waypt = current_waypoint.get_right_lane()

        self._waypoint_buffer.clear()
        self._waypoints_queue.clear()
        self._waypoints_queue.append(
            (right_waypt.next(distance_ahead)[0], RoadOption.CHANGELANERIGHT))
        if debug:
            print('Ego', self._vehicle.id, 'CHANGE RIGHT from lane',
                  current_waypoint.lane_id, 'into', right_waypt.lane_id)

    def set_lane_origin(self, distance_ahead, debug=True):
        current_waypoint = self._map.get_waypoint(self._vehicle.get_location())

        self._waypoint_buffer.clear()
        self._waypoints_queue.clear()
        self._waypoints_queue.append(
            (current_waypoint.next(distance_ahead)[0], RoadOption.LANEFOLLOW))
        if debug:
            print('Ego', self._vehicle.id,
                  'Set back to the original lane to avoid collisions',
                  current_waypoint.lane_id)

    def set_speed(self, speed):
        self._target_speed = speed

    def _compute_next_waypoints(self, k=1):  # Adds k new waypoints to queue
        # check we do not overflow the queue
        available_entries = self._waypoints_queue.maxlen - len(
            self._waypoints_queue)
        k = min(available_entries, k)

        for _ in range(k):
            last_waypoint = self._waypoints_queue[-1][0]
            next_waypoints = list(last_waypoint.next(self._sampling_radius))

            if len(next_waypoints) == 0:  # fixes a bug # DEBUG:
                break
            elif len(next_waypoints) == 1:
                # only one option available ==> lanefollowing
                next_waypoint = next_waypoints[0]
                road_option = RoadOption.LANEFOLLOW
            else:
                road_options_list = _retrieve_options(next_waypoints,
                                                      last_waypoint)
                road_option = RoadOption.STRAIGHT if RoadOption.STRAIGHT in road_options_list else random.choice(
                    road_options_list)
                next_waypoint = next_waypoints[road_options_list.index(
                    road_option)]

            self._waypoints_queue.append((next_waypoint, road_option))

    def run_step(self, debug=False):
        # not enough waypoints in the horizon? => add more!
        if len(self._waypoints_queue) < int(
                self._waypoints_queue.maxlen * 0.5):
            self._compute_next_waypoints(k=100)

        if len(self._waypoints_queue) == 0 and len(self._waypoint_buffer) == 0:
            control = carla.VehicleControl()
            control.steer = 0.0
            control.throttle = 0.0
            control.brake = 1.0
            control.hand_brake = False
            control.manual_gear_shift = False

            return control

        # Buffering the first few waypoints
        if not self._waypoint_buffer:
            for i in range(self._buffer_size):
                if self._waypoints_queue:
                    self._waypoint_buffer.append(
                        self._waypoints_queue.popleft())
                else:
                    break

        # current vehicle waypoint
        vehicle_transform = self._vehicle.get_transform()
        self._current_waypoint = self._map.get_waypoint(
            vehicle_transform.location)
        # target waypoint
        self.target_waypoint, self._target_road_option = self._waypoint_buffer[
            0]
        # move using PID controllers
        control = self._vehicle_controller.run_step(self._target_speed,
                                                    self.target_waypoint)

        # purge the queue of obsolete waypoints
        max_index = -1

        for i, (waypoint, _) in enumerate(self._waypoint_buffer):
            if waypoint.transform.location.distance(
                    vehicle_transform.location) < self._min_distance:
                max_index = i
        if max_index >= 0:
            for i in range(max_index + 1):
                self._waypoint_buffer.popleft()

        if debug:
            draw_waypoints(self._vehicle.get_world(), [self.target_waypoint],
                           self._vehicle.get_location().z + 1.0)

        return control
    def Control(self):
        rate = rospy.Rate(10)
        lon_param = {
            'K_P': 0.5,
            'K_I': 0.5,
            'K_D': 0
        }  # Set PID values for longitudinal controller
        lat_param = {
            'K_P': 0.5,
            'K_I': 0.3,
            'K_D': 0
        }  # Set PID values for lateral controller
        vehicle_controller = VehiclePIDController(
            self.vehicle, lon_param,
            lat_param)  # Calling vehicle controller class from controller.py

        i = 0
        for k in range(1, len(self.current_route)
                       ):  # Iterate through all the waypoints in the route
            self.Distance(self.current_route[i][0], self.veh_pos.transform)
            self.Waypoints()
            rospy.Subscriber(
                '/machine_learning/output', Int16, self.Detection
            )  # Subscribes to topic for Stop sign detection. Need to run carla_detect_objects.py script to obtain detection
            while self.distance > 0.5:  # Control the vehicle until the distance of the next waypoint and the vehicle is less than 0.5 m
                self.Actor(
                )  # Call Actor function to update vehicle's location
                control = vehicle_controller.run_step(
                    15, self.current_route[i]
                    [0])  # Feeds the controller the waypoints one by one
                self.velocity = self.vehicle.get_velocity(
                )  # Get vehicle velocity

                if self.detection == 11:  # Stop sign detection(apply brakes). Our ML has a class ID of 11 for stop signs
                    print('Object detected, apply brakes')
                    msg = CarlaEgoVehicleControl(
                    )  # Ego vehicle's control message
                    msg.throttle = 0
                    msg.steer = control.steer
                    msg.brake = 1
                    msg.hand_brake = control.hand_brake
                    msg.reverse = control.reverse
                    msg.gear = 1
                    msg.manual_gear_shift = control.manual_gear_shift
                    self.detection = None

                elif len(self.current_route) - 5 <= k <= len(
                        self.current_route
                ):  # If the ith waypoint is between the last waypoint minus five apply brakes
                    msg = CarlaEgoVehicleControl()
                    msg.throttle = 0
                    msg.steer = control.steer
                    msg.brake = 1
                    msg.hand_brake = control.hand_brake
                    msg.reverse = control.reverse
                    msg.gear = 1
                    msg.manual_gear_shift = control.manual_gear_shift
                    print('You arrived to your destination!!')

                else:  # If neither scenario happen, keep driving
                    msg = CarlaEgoVehicleControl()
                    msg.throttle = control.throttle
                    msg.steer = control.steer
                    msg.brake = control.brake
                    msg.hand_brake = control.hand_brake
                    msg.reverse = control.reverse
                    msg.gear = 1
                    msg.manual_gear_shift = control.manual_gear_shift

                self.Publisher(msg)
                rate.sleep()
                self.Distance(
                    self.current_route[i][0], self.veh_pos.transform
                )  # Calculates the Euclidean distance between the vehicle and the next waypoint in every iteration
            i += 1
示例#6
0
class LocalPlanner(object):
    """
    This class implements the basic behavior of following a trajectory of waypoints that is generated on-the-fly.
    The low-level motion of the vehicle is computed by using two PID controllers, one is used for the lateral control
    and the other for the longitudinal control (cruise speed).
    When multiple paths are available (intersections) this local planner makes a random choice.
    """
    # minimum distance to target waypoint as a percentage (e.g. within 90% of the total distance)
    MIN_DISTANCE_PERCENTAGE = 0.9

    def __init__(self, vehicle, opt_dict=None):
        """
        Constructor for LocalPlanner Class
        :param vehicle: actor to apply to local planner logic onto
        :param opt_dict: dictionary of arguments with the following semantics:
            dt -- time difference between physics control in seconds. This is typically fixed from server side
                  using the arguments -benchmark -fps=F . In this case dt = 1/F
            target_speed -- desired cruise speed in Km/h
            sampling_radius -- search radius for next waypoints in seconds: e.g. 0.5 seconds ahead
            lateral_control_dict -- dictionary of arguments to setup the lateral PID controller
                                    {'K_P':, 'K_D':, 'K_I':, 'dt'}
            longitudinal_control_dict -- dictionary of arguments to setup the longitudinal PID controller
                                        {'K_P':, 'K_D':, 'K_I':, 'dt'}
        """
        self._vehicle = vehicle
        self._map = self._vehicle.get_world().get_map()
        self._dt = None
        self._target_speed = None
        self._sampling_radius = None
        self._min_distance = None
        self._current_waypoint = None
        self._target_road_option = None
        self._next_waypoints = None
        self.target_waypoint = None
        self._vehicle_controller = None
        self._global_plan = None
        # queue with tuples of (waypoint, RoadOption)
        self._waypoints_queue = deque(maxlen=20000)
        self._buffer_size = 5
        self._waypoint_buffer = deque(maxlen=self._buffer_size)
        # initializing controller
        self._init_controller(opt_dict)

    def __del__(self):
        """
        Destructor for LocalPlanner Class
        :return:
        """
        if self._vehicle:
            self._vehicle.destroy()
        print("Destroying ego-vehicle!")

    def reset_vehicle(self):
        self._vehicle = None
        print("Resetting ego-vehicle!")

    def set_speed(self, speed):
        """
        Function used to request new target speed.

        :param speed: new target speed in Km/h
        :return:
        """
        self._target_speed = speed

    def _init_controller(self, opt_dict):
        """
        Private function used for controller initialization.
        :param opt_dict: dictionary of arguments.
        :return:
        """
        # default params
        self._dt = 1.0 / 20.0
        self._target_speed = 20.0  # Km/h
        self._sampling_radius = self._target_speed * 1 / 3.6  # 1 seconds horizon
        self._min_distance = self._sampling_radius * self.MIN_DISTANCE_PERCENTAGE
        args_lateral_dict = {
            'K_P': 1.95,
            'K_D': 0.01,
            'K_I': 1.4,
            'dt': self._dt
        }
        args_longitudinal_dict = {
            'K_P': 1.0,
            'K_D': 0,
            'K_I': 1,
            'dt': self._dt
        }
        # parameters overload
        if opt_dict:
            if 'dt' in opt_dict:
                self._dt = opt_dict['dt']
            if 'target_speed' in opt_dict:
                self._target_speed = opt_dict['target_speed']
            if 'sampling_radius' in opt_dict:
                self._sampling_radius = self._target_speed * opt_dict[
                    'sampling_radius'] / 3.6
            if 'lateral_control_dict' in opt_dict:
                args_lateral_dict = opt_dict['lateral_control_dict']
            if 'longitudinal_control_dict' in opt_dict:
                args_longitudinal_dict = opt_dict['longitudinal_control_dict']
        self._current_waypoint = self._map.get_waypoint(
            self._vehicle.get_location())
        self._vehicle_controller = VehiclePIDController(
            self._vehicle,
            args_lateral=args_lateral_dict,
            args_longitudinal=args_longitudinal_dict)
        self._global_plan = False
        # compute initial waypoints
        self._waypoints_queue.append(
            (self._current_waypoint.next(self._sampling_radius)[0],
             RoadOption.LANEFOLLOW))
        self._target_road_option = RoadOption.LANEFOLLOW
        # fill waypoint trajectory queue
        self._compute_next_waypoints(k=200)

    def _compute_connection(self, current_waypoint, next_waypoint):
        """
        Private function used to compute the type of topological connection between an active waypoint (current_waypoint)
        and a target waypoint(next_waypoint).
        :param current_waypoint: active waypoint
        :param next_waypoint: target waypoint
        :return: the type of topological connection encoded as a RoadOption enum:
                 RoadOption.STRAIGHT
                 RoadOption.LEFT
                 RoadOption.RIGHT
        """
        n = next_waypoint.transform.rotation.yaw
        n = n % 360.0
        c = current_waypoint.transform.rotation.yaw
        c = c % 360.0
        diff_angle = (n - c) % 180.0
        if diff_angle < 1.0:
            return RoadOption.STRAIGHT
        elif diff_angle > 90.0:
            return RoadOption.LEFT
        else:
            return RoadOption.RIGHT

    def _retrieve_options(self, list_waypoints, current_waypoint):
        """
        Private function used to compute the type of connection between the current active waypoint and the multiple
        waypoints present in list_waypoints. The result is encoded as a list of RoadOption enums.
        :param list_waypoints: list with the possible target waypoints in case of multiple options
        :param current_waypoint: current active waypoint
        :return: list of RoadOption enums representing the type of connection from the active waypoint to each
                 candidate in list_waypoints
        """
        options = []
        for next_waypoint in list_waypoints:
            # this is needed because something we are linking to
            # the beggining of an intersection, therefore the
            # variation in angle is small
            next_next_waypoint = next_waypoint.next(3.0)[0]
            link = self._compute_connection(current_waypoint,
                                            next_next_waypoint)
            options.append(link)
        return options

    def _compute_next_waypoints(self, k=1):
        """
        Private function used to add new waypoints to the trajectory queue.
        :param k: how many waypoints to compute
        :return:
        """
        # check we do not overflow the queue
        available_entries = self._waypoints_queue.maxlen - len(
            self._waypoints_queue)
        k = min(available_entries, k)
        for _ in range(k):
            last_waypoint = self._waypoints_queue[-1][0]
            next_waypoints = list(last_waypoint.next(self._sampling_radius))
            if len(next_waypoints) == 1:
                # only one option available ==> lanefollowing
                next_waypoint = next_waypoints[0]
                road_option = RoadOption.LANEFOLLOW
            else:
                # random choice between the possible options
                road_options_list = self._retrieve_options(
                    next_waypoints, last_waypoint)
                road_option = random.choice(road_options_list)
                next_waypoint = next_waypoints[road_options_list.index(
                    road_option)]
            self._waypoints_queue.append((next_waypoint, road_option))

    def set_global_plan(self, current_plan):
        """
        Function used to set global plan for vehicle
        :param current_plan: current plan data
        :return:
        """
        self._waypoints_queue.clear()
        for elem in current_plan:
            self._waypoints_queue.append(elem)
        self._target_road_option = RoadOption.LANEFOLLOW
        self._global_plan = True

    def run_step(self, debug=True):
        """
        Function used to execute one step of local planning which involves running the longitudinal and lateral PID
        controllers tofollow the waypoints trajectory.
        :param debug: boolean flag to activate waypoints debugging
        :return:
        """
        # not enough waypoints in the horizon? => add more!
        if not self._global_plan and len(self._waypoints_queue) < int(
                self._waypoints_queue.maxlen * 0.5):
            self._compute_next_waypoints(k=100)
        if len(self._waypoints_queue) == 0:
            control = carla.VehicleControl()
            control.steer = 0.0
            control.throttle = 0.0
            control.brake = 1.0
            control.hand_brake = False
            control.manual_gear_shift = False
            return control
        #   Buffering the waypoints
        if not self._waypoint_buffer:
            for i in range(self._buffer_size):
                if self._waypoints_queue:
                    self._waypoint_buffer.append(
                        self._waypoints_queue.popleft())
                else:
                    break
        # current vehicle waypoint
        self._current_waypoint = self._map.get_waypoint(
            self._vehicle.get_location())
        # target waypoint
        self.target_waypoint, self._target_road_option = self._waypoint_buffer[
            0]
        # move using PID controllers
        control = self._vehicle_controller.run_step(self._target_speed,
                                                    self.target_waypoint)
        # purge the queue of obsolete waypoints
        vehicle_transform = self._vehicle.get_transform()
        max_index = -1
        for i, (waypoint, _) in enumerate(self._waypoint_buffer):
            if distance_vehicle(waypoint,
                                vehicle_transform) < self._min_distance:
                max_index = i
        if max_index >= 0:
            for i in range(max_index + 1):
                self._waypoint_buffer.popleft()
        if debug:
            draw_waypoints(self._vehicle.get_world(), [self.target_waypoint],
                           self._vehicle.get_location().z + 1.0)
        return control