def test_estimate(self, jhu_data, population_data, country): warnings.simplefilter("ignore", category=UserWarning) # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" with pytest.raises(ValueError): snl.estimate(SIR) snl.trend(include_init_phase=True, show_figure=False) snl.disable(phases=["0th"]) with pytest.raises(AttributeError): snl.estimate_history(phase="1th") # Parameter estimation with pytest.raises(KeyError): snl.estimate(SIR, phases=["30th"]) with pytest.raises(ValueError): snl.estimate(model=SIR, tau=1440) snl.enable(phases=["0th"]) with pytest.raises(TypeError): snl.estimate(model=SIR, phases="1st") with pytest.raises(ValueError): snl.estimate(model=SIR, phases=["0th"]) snl.clear(include_past=True) snl.trend(show_figure=False) snl.estimate(SIR) # Estimation history snl.estimate_history(phase="1st") # Estimation accuracy snl.estimate_accuracy(phase="1st") # Get a value snl.get(Term.RT) with pytest.raises(KeyError): snl.get("feeling")
def test_scenario_with_model_change(self): # Instance to save population values population_data = PopulationData(filename=None) # Set tau value and start date of records example_data = ExampleData(tau=1440, start_date="01Jan2020") # Preset of SIR-F parameters preset_dict = SIRF.EXAMPLE["param_dict"] # Create dataset from 01Jan2020 to 31Jan2020 area = {"country": "Theoretical"} example_data.add(SIRF, step_n=30, **area) # Register population value population_data.update(SIRF.EXAMPLE["population"], **area) # Create Scenario class snl = Scenario(example_data, population_data, tau=1440, **area) # Set 0th phase from 02Jan2020 to 31Jan2020 with preset parameter values snl.clear(include_past=True) snl.add(end_date="31Jan2020", model=SIRF, **preset_dict) # Add main scenario snl.add(end_date="31Dec2020", name="Main") # Add lockdown scenario rho_lock = snl.get("rho", phase="0th") / 2 snl.add(end_date="31Dec2020", name="Lockdown", rho=rho_lock) # Add medicine scenario kappa_med = snl.get("kappa", phase="0th") / 2 sigma_med = snl.get("sigma", phase="0th") * 2 snl.add(end_date="31Dec2020", name="Medicine", kappa=kappa_med, sigma=sigma_med) # Add vaccine scenario snl.add(end_date="31Dec2020", name="Vaccine", model=SIRFV, omega=0.001) # Summarize snl.summary() # Compare scenarios snl.describe(y0_dict={"Vaccinated": 0})
def test_estimate(self, jhu_data, population_data, country): warnings.simplefilter("ignore", category=UserWarning) # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" with pytest.raises(ValueError): snl.estimate(SIR) snl.trend(show_figure=False) with pytest.raises(AttributeError): snl.estimate_history(phase="last") # Parameter estimation with pytest.raises(KeyError): snl.estimate(SIR, phases=["30th"]) with pytest.raises(ValueError): snl.estimate(model=SIR, tau=1440) snl.estimate(SIR, timeout=1, timeout_iteration=1) # Estimation history snl.estimate_history(phase="last") # Estimation accuracy snl.estimate_accuracy(phase="last") # Get a value snl.get(Term.RT) with pytest.raises(KeyError): snl.get("feeling")
def test_analysis(self, jhu_data, population_data): scenario = Scenario(jhu_data, population_data, country="Italy") with pytest.raises(KeyError): scenario.simulate(name="Main", show_figure=False) with pytest.raises(ValueError): scenario.estimate(model=SIRF) # S-R trend analysis scenario.trend(show_figure=False) warnings.filterwarnings("ignore", category=UserWarning) scenario.trend(show_figure=True) # Parameter estimation of SIR-F model with pytest.raises(ValueError): scenario.param_history(targets=["Rt"], show_figure=False) with pytest.raises(ValueError): scenario.estimate(model=SIRF, tau=1440) scenario.estimate(model=SIRF) # History of estimation scenario.estimate_history(phase="1st") with pytest.raises(KeyError): scenario.estimate_history(phase="0th") # Accuracy of estimation scenario.estimate_accuracy(phase="1st") with pytest.raises(KeyError): scenario.estimate_accuracy(phase="0th") # Prediction scenario.add(name="Main", days=100) scenario.simulate(name="Main", show_figure=False) scenario.simulate(name="Main", show_figure=True) scenario.param_history(targets=["Rt"], show_figure=False) scenario.param_history(targets=["Rt"], divide_by_first=False) scenario.param_history(targets=["Rt"], show_box_plot=False) with pytest.raises(KeyError): scenario.param_history(targets=["Rt", "Value"]) with pytest.raises(KeyError): scenario.param_history(targets=["Rt"], box_plot=False) # New scenario sigma_new = scenario.get("sigma", phase="last") * 2 with pytest.raises(KeyError): scenario.get("value") warnings.filterwarnings("ignore", category=DeprecationWarning) scenario.add_phase(name="New medicines", days=100, sigma=sigma_new) # Summarize scenarios summary_df = scenario.summary() assert isinstance(summary_df, pd.DataFrame) desc_df = scenario.describe() assert isinstance(desc_df, pd.DataFrame) # Estimation errors with pytest.raises(TypeError): scenario.estimate(SIRF, phases="1st") with pytest.raises(KeyError): scenario.estimate(SIRF, phases=["100th"])
def test_adjust_end(self, jhu_data, population_data, country): # Setting scenario = Scenario(country=country) scenario.register(jhu_data, population_data) scenario.timepoints(first_date="01Dec2020", today="01Feb2021") # Main scenario scenario.add(end_date="01Apr2021", name="Main") # New scenario scenario.clear(name="New", include_past=True) scenario.add(end_date="01Jan2021", name="New") # Adjust end date scenario.adjust_end() # Check output assert scenario.get(Term.END, phase="last", name="Main") == "01Apr2021" assert scenario.get(Term.END, phase="last", name="New") == "01Apr2021"
def test_scenario(self): area = {"country": "Theoretical"} # Set-up example dataset (from 01Jan2020 to 31Jan2020) example_data = ExampleData(tau=1440, start_date="01Jan2020") example_data.add(SIRF, step_n=30, **area) # Population value population_data = PopulationData(filename=None) population_data.update(SIRF.EXAMPLE["population"], **area) # Set-up Scenario instance snl = Scenario(tau=1440, **area) snl.register(example_data, population_data) # Check records record_df = snl.records(variables="CFR") assert set(record_df.columns) == set( [Term.DATE, Term.C, Term.F, Term.R]) # Add a past phase to 31Jan2020 with parameter values snl.add(model=SIRF, **SIRF.EXAMPLE["param_dict"]) # Check summary df = snl.summary() assert not df.empty assert len(df) == 1 assert Term.RT in df # Main scenario snl.add(end_date="31Dec2020", name="Main") assert snl.get(Term.RT, phase="last", name="Main") == 2.50 # Lockdown scenario snl.clear(name="Lockdown") rho_lock = snl.get("rho", phase="0th") * 0.5 snl.add(end_date="31Dec2020", name="Lockdown", rho=rho_lock) assert snl.get(Term.RT, phase="last", name="Lockdown") == 1.25 # Medicine scenario snl.clear(name="Medicine") kappa_med = snl.get("kappa", phase="0th") * 0.5 sigma_med = snl.get("sigma", phase="0th") * 2 snl.add(end_date="31Dec2020", name="Medicine", kappa=kappa_med, sigma=sigma_med) assert snl.get(Term.RT, phase="last", name="Medicine") == 1.31 # Add vaccine scenario snl.clear(name="Vaccine") rho_vac = snl.get("rho", phase="0th") * 0.8 kappa_vac = snl.get("kappa", phase="0th") * 0.6 sigma_vac = snl.get("sigma", phase="0th") * 1.2 snl.add(end_date="31Dec2020", name="Vaccine", rho=rho_vac, kappa=kappa_vac, sigma=sigma_vac) assert snl.get(Term.RT, phase="last", name="Vaccine") == 1.72 # Description snl.describe() # History snl.history("Rt") snl.history("rho") snl.history("Infected") snl.history_rate(name="Medicine") snl.simulate(name="Vaccine")
def test_analysis(self, jhu_data, population_data): scenario = Scenario(jhu_data, population_data, country="Italy") # S-R trend analysis scenario.trend(show_figure=False) # Parameter estimation of SIR-F model scenario.estimate(model=SIRF) # Prediction scenario.add_phase(name="Main", days=100) scenario.simulate(name="Main", show_figure=False) scenario.param_history(targets=["Rt"], name="Main", show_figure=False) # New scenario sigma_new = scenario.get("sigma", phase="last") * 2 scenario.add_phase(name="New medicines", days=100, sigma=sigma_new) # Summarize scenarios summary_df = scenario.summary() assert isinstance(summary_df, pd.DataFrame) desc_df = scenario.describe() assert isinstance(desc_df, pd.DataFrame)