def test_analysis(self, jhu_data, population_data): scenario = Scenario(jhu_data, population_data, country="Italy") # S-R trend analysis scenario.trend(show_figure=False) # Parameter estimation of SIR-F model scenario.estimate(model=SIRF) # Prediction scenario.add_phase(name="Main", days=100) scenario.simulate(name="Main", show_figure=False) scenario.param_history(targets=["Rt"], name="Main", show_figure=False) # New scenario sigma_new = scenario.get("sigma", phase="last") * 2 scenario.add_phase(name="New medicines", days=100, sigma=sigma_new) # Summarize scenarios summary_df = scenario.summary() assert isinstance(summary_df, pd.DataFrame) desc_df = scenario.describe() assert isinstance(desc_df, pd.DataFrame)
def test_simulate(self, jhu_data, population_data, country): warnings.simplefilter("ignore", category=UserWarning) warnings.simplefilter("ignore", category=DeprecationWarning) # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01Aug2020" snl.trend(show_figure=False) # Parameter estimation with pytest.raises(ValueError): # Deprecated snl.param_history(["rho"]) snl.estimate(SIR) # Simulation snl.simulate() # Parameter history (Deprecated) snl.param_history([Term.RT], divide_by_first=False) snl.param_history(["rho"]) snl.param_history(["rho"], show_figure=False) snl.param_history(["rho"], show_box_plot=False) with pytest.raises(KeyError): snl.param_history(["feeling"]) # Comparison of scenarios snl.describe() snl.history(target="Rt") snl.history(target="sigma") snl.history(target="Infected") with pytest.raises(KeyError): snl.history(target="temperature") # Change rate of parameters snl.history_rate(name="Main") with pytest.raises(TypeError): snl.history_rate(params="", name="Main") # Add new scenario snl.add(end_date="01Sep2020", name="New") snl.describe()
def test_analysis(self, jhu_data, population_data): scenario = Scenario(jhu_data, population_data, country="Italy") with pytest.raises(KeyError): scenario.simulate(name="Main", show_figure=False) with pytest.raises(ValueError): scenario.estimate(model=SIRF) # S-R trend analysis scenario.trend(show_figure=False) warnings.filterwarnings("ignore", category=UserWarning) scenario.trend(show_figure=True) # Parameter estimation of SIR-F model with pytest.raises(ValueError): scenario.param_history(targets=["Rt"], show_figure=False) with pytest.raises(ValueError): scenario.estimate(model=SIRF, tau=1440) scenario.estimate(model=SIRF) # History of estimation scenario.estimate_history(phase="1st") with pytest.raises(KeyError): scenario.estimate_history(phase="0th") # Accuracy of estimation scenario.estimate_accuracy(phase="1st") with pytest.raises(KeyError): scenario.estimate_accuracy(phase="0th") # Prediction scenario.add(name="Main", days=100) scenario.simulate(name="Main", show_figure=False) scenario.simulate(name="Main", show_figure=True) scenario.param_history(targets=["Rt"], show_figure=False) scenario.param_history(targets=["Rt"], divide_by_first=False) scenario.param_history(targets=["Rt"], show_box_plot=False) with pytest.raises(KeyError): scenario.param_history(targets=["Rt", "Value"]) with pytest.raises(KeyError): scenario.param_history(targets=["Rt"], box_plot=False) # New scenario sigma_new = scenario.get("sigma", phase="last") * 2 with pytest.raises(KeyError): scenario.get("value") warnings.filterwarnings("ignore", category=DeprecationWarning) scenario.add_phase(name="New medicines", days=100, sigma=sigma_new) # Summarize scenarios summary_df = scenario.summary() assert isinstance(summary_df, pd.DataFrame) desc_df = scenario.describe() assert isinstance(desc_df, pd.DataFrame) # Estimation errors with pytest.raises(TypeError): scenario.estimate(SIRF, phases="1st") with pytest.raises(KeyError): scenario.estimate(SIRF, phases=["100th"])
def test_simulate(self, jhu_data, population_data, country): warnings.simplefilter("ignore", category=UserWarning) warnings.simplefilter("ignore", category=DeprecationWarning) # Setting snl = Scenario(jhu_data, population_data, country) snl.first_date = "01Apr2020" snl.last_date = "01May2020" with pytest.raises(ValueError): snl.simulate() with pytest.raises(ValueError): snl.track() snl.trend(show_figure=False) # Parameter estimation with pytest.raises(ValueError): # Deprecated snl.param_history(["rho"]) all_phases = snl.summary().index.tolist() snl.disable(all_phases[:-2]) with pytest.raises(NameError): snl.simulate() snl.estimate(SIRF, timeout=5, timeout_iteration=5) # Simulation snl.simulate(variables=[Term.C, Term.CI, Term.F, Term.R]) snl.simulate(phases=all_phases[-2:]) # Parameter history (Deprecated) snl.param_history([Term.RT], divide_by_first=False) snl.param_history(["rho"]) snl.param_history(["rho"], show_figure=False) snl.param_history(["rho"], show_box_plot=False) with pytest.raises(KeyError): snl.param_history(["feeling"]) # Comparison of scenarios snl.describe() snl.track() snl.history(target="Rt") snl.history(target="sigma") snl.history(target="rho", show_figure=False) snl.history(target="Infected", phases=all_phases[-2:]) with pytest.raises(KeyError): snl.history(target="temperature") # Change rate of parameters snl.history_rate(name="Main") snl.history_rate( name="Main", params=["theta", "kappa"], show_figure=False) with pytest.raises(TypeError): snl.history_rate(params="", name="Main") # Add new scenario snl.add(end_date="01Sep2020", name="New") snl.describe()