Пример #1
0
def test_error():
    with scheduler_and_workers() as (s, (a, b)):
        c = Client(s.address_to_clients)

        assert raises(TypeError,
                lambda: c.get({'x': 1, 'y': (inc, 'x', 'x')}, 'y'))
        assert 'y' not in s.data
        c.close()
Пример #2
0
def test_get_with_dill():
    with scheduler_and_workers() as (s, (a, b)):
        c = Client(s.address_to_clients)

        dsk = {'x': 1, 'y': (partial(add, 1), 'x')}
        keys = 'y'

        assert c.get(dsk, keys) == 2
        c.close()
Пример #3
0
def test_get():
    with scheduler_and_workers() as (s, (a, b)):
        c = Client(s.address_to_clients)

        dsk = {'x': 1, 'y': (add, 'x', 'x'), 'z': (inc, 'y')}
        keys = ['y', 'z']

        assert c.get(dsk, keys) == [2, 3]
        c.close()
Пример #4
0
def test_multiple_clients():
    with scheduler_and_workers(1) as (s, (a,)):
        c = Client(s.address_to_clients)
        d = Client(s.address_to_clients)

        assert c.get({'x': (inc, 1)}, 'x') == d.get({'x': (inc, 1)}, 'x')

        pool = ThreadPool(2)

        future1 = pool.apply_async(c.get,
                                   args=({'x': 1, 'y': (inc, 'x')}, 'y'))
        future2 = pool.apply_async(d.get,
                                   args=({'a': 1, 'b': (inc, 'a')}, 'b'))

        while not (future1.ready() and future2.ready()):
            sleep(1e-6)

        assert future1.get() == future2.get()
        c.close()
        d.close()
Пример #5
0
def test_multiple_clients():
    with scheduler_and_workers(1) as (s, (a,)):
        c = Client(s.address_to_clients)
        d = Client(s.address_to_clients)

        assert c.get({'x': (inc, 1)}, 'x') == d.get({'x': (inc, 1)}, 'x')

        def sleep_inc(x):
            sleep(0.5)
            return x + 1

        pool = ThreadPool(2)

        future1 = pool.apply_async(c.get,
                                   args=({'x': 1, 'y': (sleep_inc, 'x')}, 'y'))
        future2 = pool.apply_async(d.get,
                                   args=({'a': 1, 'b': (sleep_inc, 'a')}, 'b'))

        assert future1.get() == future2.get()
        c.close()
        d.close()
Пример #6
0
def test_register_collections():
    try:
        import dask.bag as db
    except ImportError:
        return
    with scheduler_and_workers() as (s, (a, b)):
        c = Client(s.address_to_clients)

        b = db.from_sequence(range(5), npartitions=2).map(inc)
        assert not s.collections
        c.set_collection('mybag', b)
        assert 'mybag' in s.collections

        d = Client(s.address_to_clients)
        b2 = d.get_collection('mybag')

        assert (type(b) == type(b2) and
                b.npartitions == b2.npartitions)
        assert list(b) == list(b2)

        c.close()
        d.close()
Пример #7
0
def run_JK_distributed(df, param, randomize=True):
    '''Receives the pandas dataframe with the objects containing the
    temperature decrements and the parameter object and run the kSZ
    statistic and generate Jack Knifes.
    Everything runs in the cluster, so current terminal does not need
    to request many cpus.

    df: dataframe object containing the variables for the calculation
    params: param file for this calculation
    NJK: how many subgroups we will make to run the calculation
    randomize: shuffle data before running the JK'''

    Ncores = envVars.Ncores
    NWorkers = envVars.NWorkers
    Ngroups = param.JK_NGROUPS
    resampling_method = param.JK_RESAMPLING_METHOD.lower()

    #setup cluster
    cluster = SGECluster(walltime='172800', processes=1, cores=1,
                         env_extra=['#$-pe sge_pe %i' % Ncores,
                                    '-l m_core=%i' % Ncores,
                                    'mkdir -p /tmp/pag227/dask/dask-scratch',
                                    'export NUMBA_NUM_THREADS=%i' % Ncores,
                                    'export OMP_NUM_THREADS=%i' % Ncores
#                                    'export OMP_NUM_THREADS=1',  # noqa
                                    ])
    cluster.scale(NWorkers)
    client = Client(cluster)
    time.sleep(30)
    #end setting up cluster

    #send full dataset to the cluster
    future_fullDataset = client.scatter(df)
    future_params = client.scatter(param)
    res_fullDataset = client.submit(pairwiser.get_pairwise_ksz,
                                    future_fullDataset,
                                    future_params, multithreading=True)
    #done with the full dataset

    #iterate over partial dataset for the JK
    if JK == resampling_method:
        indices_toDrop = JK_tools.indicesToDrop(df, Ngroups,
                                                randomize=randomize)
    jk_results = []
    futureData = []  #data to be sent in jk or bootstrap in galaxy space

    if (JK == resampling_method) or (BS == resampling_method):
        for j in range(Ngroups):  # submit data to the cluster
            if JK in resampling_method:  # if method jk
                dataJK = df.drop(indices_toDrop[j], inplace=False)
                futureData.append(client.scatter(dataJK))
            elif BS in resampling_method:
                dataBS = df.sample(len(df), replace=True)
                futureData.append(client.scatter(dataBS))
        #Now do the JK calculation
        for j in range(Ngroups):
            jk_results.append(client.submit(pairwiser.get_pairwise_ksz,
                              futureData[j],
                              future_params, multithreading=True))

    if BS_PW == resampling_method:  # submit the same dataset
        futureData = client.scatter(df, broadcast=True)

        for j in range(Ngroups):
            jk_results.append(client.submit(bs_pw.get_bootstrap_pairwise,
                                            futureData,
                                            future_params,
                                            multithreading=True,
                                            pure=False))
    if resampling_method == BS_DT:
        for j in range(Ngroups):
            df_bs = df.copy()
            choose = np.random.choice(len(df), len(df))
            df_bs['dT'] = df.dT.values[choose]
            futureData.append(client.scatter(df_bs))
        for j in range(Ngroups):
            jk_results.append(client.submit(pairwiser.get_pairwise_ksz,
                                            futureData[j],
                                            future_params,
                                            multithreading=True))

    if resampling_method == TL_JK:
        tiled_JK.classify_grid(df)
        df = tiled_JK.remove_edge_galaxies(df, tol_sigma=1.5)
        Ntiles = tiled_JK.how_many_tiles(df)
        for j in range(Ntiles):
            df_tosubmit = tiled_JK.remove_tile(df, j)
            futureData.append(client.scatter(df_tosubmit))
        for j in range(Ntiles):
            jk_results.append(client.submit(pairwiser.get_pairwise_ksz,
                                            futureData[j],
                                            future_params,
                                            multithreading=True))
    #extract results
    fullDataset_results = res_fullDataset.result()
    jk_results = client.gather(jk_results)
    client.close()
#    cluster.close()

    return fullDataset_results, jk_results
Пример #8
0
class Loader(object):
    """  A loader to populate a Dask Dataframe with data from a Cassandra table. """
    def __init__(self):
        """
        Initialization of DaskCassandraLoader

        > DaskCassandraLoader()

        """
        self.logger = logging.getLogger(__name__)
        self.error = None
        self.warning = None
        self.cassandra_con = None
        self.dask_client = None
        return

    def connect_to_local_dask(self):
        """
        Connects to a local Dask cluster.

        > connect_to_local_dask()

        """
        self.logger.info("Connecting to Dask")
        self.logger.info('Create and connect to a local Dask cluster.')
        dask_cluster = LocalCluster(
            scheduler_port=0,
            silence_logs=True,
            processes=False,
            asynchronous=False,
        )
        self.dask_client = Client(dask_cluster, asynchronous=False)
        self.logger.info("Connected to Dask")
        return

    def connect_to_dask(self, dask_cluster):
        """
        Connect to a Dask Cluster

        > connect_to_Dask('127.0.0.1:8786')
        or
        > connect_to_Dask(cluser)

        :param dask_cluster: String with format url:port or an instance of Cluster
        """

        self.logger.info("Connecting to Dask")
        self.logger.info('Create and connect to a local Dask cluster.')
        self.dask_client = Client(dask_cluster, asynchronous=False)
        self.logger.info("Connected to Dask")
        return

    def disconnect_from_dask(self):
        """
        Ends the established Dask connection.

        > disconnect_from_dask()

        """
        self.dask_client.close()
        return

    def connect_to_cassandra(self, cassandra_clusters, cassandra_keyspace,
                             username, password):
        """
        Connects to a Cassandra cluster specified by a list of IPs.

        > connect_to_cassandra('test', ['10.0.1.1', '10.0.1.2'])

        :param cassandra_keyspace: It is a string which contains an existent Cassandra keyspace.
        :param cassandra_clusters: It is a list of IPs with each IP represented as a string.
        :param username: It is a string.
        :param password: It is a string.
        """
        if cassandra_keyspace == "":
            raise Exception("Key space can't be an empty string!!!")
        try:
            self.cassandra_con = Connector(cassandra_clusters,
                                           cassandra_keyspace, username,
                                           password)
        except Exception as e:
            raise Exception(
                "It was not possible to set a connection with the Cassandra cluster: "
                + str(e))
        return

    def disconnect_from_cassandra(self):
        """
        Ends the established Cassandra connection.

        > disconnect_from_cassandra()

        """
        if self.cassandra_con is not None:
            self.cassandra_con.shutdown()
        return

    def load_cassandra_table(self, table_name, projections, and_predicates,
                             partitions_to_load, force):
        """
        It loads a Cassandra table into a Dask dataframe.

        > load_cassandra_table('tab1',
                               ['id', 'year', 'month', 'day'],
                               [('month', 'less_than', [1]), ('day', 'in\_', [1,2,3,8,12,30])],
                               [('id', [1, 2, 3, 4, 5, 6]), ('year',[2019])])

        :param table_name: It is a String.
        :param projections: A list of columns names. Each column name is a String.
        :param and_predicates: List of triples. Each triple contains column name as String,
         operator name as String, and a list of values depending on the operator. CassandraOperators.print_operators()
         prints all available operators. It should only contain columns which are not partition columns.
        :param partitions_to_load: List of tuples. Each tuple as a column name as String.
         and a list of keys which should be selected. It should only contain columns which are partition columns.
        :param force: It is a boolean. In case all the partitions need to be loaded, which is not recommended,
         it should be set to 'True'.
        """

        table = Table(self.cassandra_con.keyspace, table_name)

        table.load_metadata(self.cassandra_con)
        if table.error:
            raise Exception("load_cassandra_table failed: " + table.error)

        loading_query = LoadingQuery()
        loading_query.set_projections(table, projections)
        if loading_query.error:
            raise Exception("load_cassandra_table failed: " +
                            loading_query.error)

        loading_query.set_and_predicates(table, and_predicates)
        if loading_query.error:
            raise Exception("load_cassandra_table failed: " +
                            loading_query.error)

        loading_query.partition_elimination(table, partitions_to_load, force)
        if loading_query.error:
            raise Exception("load_cassandra_table failed: " +
                            loading_query.error)

        loading_query.build_query(table)
        if loading_query.error:
            raise Exception("load_cassandra_table failed: " +
                            loading_query.error)

        loading_query.print_query()

        table.load_data(self.cassandra_con, loading_query)
        return table
Пример #9
0
def run_MC_case(n_mc, local=True, dask=True, batch_size=os.cpu_count()):
    """
    Inputs:
        n_mc: the number of MC samples
        local: if using Dask, whether to use the local option (True)
        dask: whether to use dask (True)
        batch_size: for the non Dask option, number of cases to run in parallel (16)
    Outputs:
        results_df: Pandas dataFrame containing inputs to and output from the model
        my_campaign: EasyVVUQ MC campaign object
        my_sampler: EasyVVUQ RandomSampler object
    """

    times = np.zeros(9)

    time_start = time.time()
    time_start_whole = time_start
    # Set up a fresh campaign called "fusion_pce."
    if dask:
        my_campaign = uq.CampaignDask(name='fusion_mc.')
    else:
        my_campaign = uq.Campaign(name='fusion_mc.')

        # Define parameter space
    params = define_params()

    # Create an encoder and decoder for PCE test app
    encoder = uq.encoders.GenericEncoder(template_fname='fusion.template',
                                         delimiter='$',
                                         target_filename='fusion_in.json')

    decoder = uq.decoders.SimpleCSV(
        target_filename="output.csv",
        output_columns=["te", "ne", "rho", "rho_norm"])

    # Add the app (automatically set as current app)
    my_campaign.add_app(name="fusion",
                        params=params,
                        encoder=encoder,
                        decoder=decoder)

    time_end = time.time()
    times[1] = time_end - time_start
    print('Time for phase 1 = %.3f' % (times[1]))

    time_start = time.time()
    # Create the sampler
    vary = define_vary()

    # Associate a sampler with the campaign
    my_sampler = uq.sampling.RandomSampler(vary=vary, max_num=n_mc)
    my_campaign.set_sampler(my_sampler)

    # Will draw all (of the finite set of samples)
    my_campaign.draw_samples()
    print('Number of samples = %s' % my_campaign.get_active_sampler().count)

    time_end = time.time()
    times[2] = time_end - time_start
    print('Time for phase 2 = %.3f' % (times[2]))

    time_start = time.time()
    # Create and populate the run directories
    my_campaign.populate_runs_dir()

    time_end = time.time()
    times[3] = time_end - time_start
    print('Time for phase 3 = %.3f' % (times[3]))

    time_start = time.time()
    # Run the cases
    cwd = os.getcwd().replace(' ', '\\ ')  # deal with ' ' in the path
    cmd = f"{cwd}/fusion_model.py fusion_in.json"

    if dask:
        if local:
            print('Running locally')
            import multiprocessing.popen_spawn_posix
            #        from distributed import Client
            from dask.distributed import Client, LocalCluster
            cluster = LocalCluster(threads_per_worker=1)
            #        Client()
            client = Client(cluster)  # processes=True, threads_per_worker=1)
        else:
            print('Running using SLURM')
            from dask.distributed import Client
            from dask_jobqueue import SLURMCluster
            cluster = SLURMCluster(job_extra=[
                '--qos=p.tok.openmp.2h', '--mail-type=end',
                '[email protected]', '-t 2:00:00'
            ],
                                   queue='p.tok.openmp',
                                   cores=8,
                                   memory='8 GB',
                                   processes=8)
            cluster.scale(32)
            print(cluster)
            print(cluster.job_script())
            client = Client(cluster)
        print(client)
        my_campaign.apply_for_each_run_dir(
            uq.actions.ExecuteLocal(cmd, interpret='python3'), client)

        client.close()
        if not local:
            client.shutdown()
        else:
            client.shutdown()
    else:  # in case there is a problem with dask
        execution = my_campaign.apply_for_each_run_dir(
            uq.actions.ExecuteLocalV2(cmd, interpret='python3'),
            batch_size=batch_size)
        execution.start()
        while my_campaign.get_active_sampler().count != execution.progress(
        )['finished']:
            print(execution.progress())
            time.sleep(1)
        print(execution.progress())

    time_end = time.time()
    times[4] = time_end - time_start
    print('Time for phase 4 = %.3f' % (times[4]))

    time_start = time.time()
    # Collate the results
    my_campaign.collate()
    results_df = my_campaign.get_collation_result()

    return results_df, my_campaign, my_sampler
Пример #10
0
def main(src_dir):
    logging.getLogger("tifffile").setLevel(logging.ERROR)
    coloredlogs.install(
        level="DEBUG", fmt="%(asctime)s %(levelname)s %(message)s", datefmt="%H:%M:%S"
    )

    # assume we have tunnel the scheduler to local
    scheduler = "localhost:8786"
    logger.info(f'connecting to scheduler at "{scheduler}"')
    client = Client(scheduler, timeout="300s")  # 5 min
    print(client)

    src_dir = os.path.abspath(src_dir)

    # load dataset
    src_ds = open_dataset(src_dir)
    desc = tuple(
        f"{k}={v}" for k, v in zip(("x", "y", "z"), reversed(src_ds.tile_shape))
    )
    logger.info(f"tiling dimension ({', '.join(desc)})")

    # generate tile index list (TODO deal with multi-color/view here)
    def groupby_tiles(inventory, index: List[str]):
        """
        Aggregation function that generates the proper internal list layout for all the tiles in their natural N-D layout.

        Args:
            inventory (pd.DataFrame): the listing inventory
            index (list of str): the column header
        """
        tiles = []
        for _, tile in inventory.groupby(index[0]):
            if len(index) > 1:
                # we are not at the fastest dimension yet, decrease 1 level
                tiles.extend(groupby_tiles(tile, index[1:]))
            else:
                # fastest dimension, call retrieval function
                tiles.append(src_ds[tile])
        return tiles

    index = ["tile_y", "tile_x"]
    if "tile_z" in src_ds.index.names:
        index = ["tile_z"] + index
    logger.info(f"a {len(index)}-D tiled dataset")

    tiles = groupby_tiles(src_ds, index)
    logger.info(f"{len(tiles)} to process")

    tiles_bin4 = [downsample_naive(tile, 4) for tile in tiles]

    dname = os.path.basename(src_dir)
    dname = f"{dname}_bin4"
    dst_dir = os.path.join(os.path.dirname(src_dir), dname)
    create_dir(dst_dir)

    # write back
    write_back_tasks = []
    for i, tile in enumerate(tiles_bin4):
        fname = f"tile_{i:04d}.tif"
        path = os.path.join(dst_dir, fname)
        future = write_tiff(path, tile)
        write_back_tasks.append(future)

    # submit task
    futures = client.compute(write_back_tasks, scheduler="processes")
    with tqdm(total=len(futures)) as pbar:
        for future in as_completed(futures, with_results=False):
            try:
                uri = future.result()
                uri = os.path.basename(uri)

                pbar.set_description(uri)
                pbar.update(1)
            except Exception as error:
                logger.exception(error)
            future.release()

    logger.info("closing scheduler connection")
    client.close()
Пример #11
0
def build_patches(min_lon, min_lat, max_lon, max_lat, begin_iso_dt, end_iso_dt,
                  config_yaml):
    logging.info("Executing: %s(%s)" % ("build_patches", locals()))

    # Projection definition for Pyproj (PROJ4 keywords)
    grid_proj_params = {
        "proj": "lcc",
        "lon_0": (min_lon + max_lon) / 2,
        "lat_0": (min_lat + max_lat) / 2,
        "lat_1": min_lat,
        "lat_2": max_lat
    }
    print(grid_proj_params)
    with open(config_yaml, "r") as config_file:
        config = yaml.load(config_file)

    glm_config = config["glm"]
    glm_path = glm_config["glm_path"]
    grid_path = glm_config["grid_path"]
    file_freq = glm_config["file_freq"]
    glm_file_dates = pd.DatetimeIndex(
        pd.date_range(start=begin_iso_dt, end=end_iso_dt, freq=file_freq))
    grid_freq = glm_config["grid_freq"]
    dx_km = glm_config["dx_km"]
    x_extent_km = int(
        math.ceil(
            haversine((min_lat, min_lon), (min_lat, max_lon),
                      unit=Unit.KILOMETERS)))
    y_extent_km = int(
        math.ceil(
            haversine((min_lat, min_lon), (max_lat, min_lon),
                      unit=Unit.KILOMETERS)))

    if not os.path.exists(grid_path):
        os.makedirs(grid_path)

    if PARALLEL:
        cluster = LocalCluster(n_workers=N_WORKERS,
                               processes=True,
                               threads_per_worker=THREADS_PER_WORKER,
                               memory_limit=WORKER_MEM)
        client = Client(cluster)
        glm_jobs = []
        for date in glm_file_dates:
            logging.info("Processing: %s", date)
            glm_jobs.append(
                client.submit(create_glm_grids, glm_path, grid_path, date,
                              min(end_date, date + pd.Timedelta(file_freq)),
                              grid_freq, grid_proj_params, dx_km, x_extent_km,
                              y_extent_km))
        for glm_job in as_completed(glm_jobs):
            res = glm_job.result()
            if glm_job.status == "error":
                traceback.format_tb(res[-1])
        del glm_jobs[:]
    else:
        for date in glm_file_dates:
            logging.info("Processing: %s", date)
            create_glm_grids(glm_path, grid_path, date,
                             min(end_iso_dt,
                                 date + pd.Timedelta(file_freq)), grid_freq,
                             grid_proj_params, dx_km, x_extent_km, y_extent_km)

    abi_config = config["abi"]
    abi_path = abi_config["abi_path"]
    patch_path = abi_config["patch_path"]
    glm_grid_path = abi_config["glm_grid_path"]
    bands = np.array(abi_config["bands"])
    file_freq = abi_config["file_freq"]
    lead_time = abi_config["lead_time"]
    patch_x_length_pixels = abi_config["patch_x_length_pixels"]
    patch_y_length_pixels = abi_config["patch_y_length_pixels"]
    time_range_minutes = abi_config["time_range_minutes"]
    bt = bool(abi_config["bt"])

    if not os.path.exists(patch_path):
        makedirs(patch_path)

    abi_file_dates = pd.DatetimeIndex(
        pd.date_range(start=begin_iso_dt, end=end_iso_dt, freq=file_freq))

    if PARALLEL:
        abi_jobs = []
        for date in abi_file_dates:
            abi_jobs.append(
                client.submit(extract_all_abi_patches,
                              abi_path,
                              patch_path,
                              glm_grid_path,
                              date,
                              min(end_iso_dt, date + pd.Timedelta(file_freq)),
                              bands,
                              lead_time,
                              patch_x_length_pixels,
                              patch_y_length_pixels,
                              time_range_minutes=time_range_minutes,
                              glm_file_freq=file_freq,
                              bt=bt))
        # for abi_job in as_completed(abi_jobs):
        #     res = abi_job.result()
        #     if abi_job.status == "error":
        #         print(traceback.format_tb(res[-1]),flush=True)
        wait(abi_jobs)
        abi_results = client.gather(abi_jobs)
        del abi_jobs[:]
        client.close()
    else:
        for date in abi_file_dates:
            extract_all_abi_patches(abi_path,
                                    patch_path,
                                    glm_grid_path,
                                    date,
                                    min(end_iso_dt,
                                        date + pd.Timedelta(file_freq)),
                                    bands,
                                    lead_time,
                                    patch_x_length_pixels,
                                    patch_y_length_pixels,
                                    time_range_minutes=time_range_minutes,
                                    glm_file_freq=file_freq,
                                    bt=bt)
Пример #12
0
def test_pagerank():
    gc.collect()
    input_data_path = r"../datasets/hibench_small/1/part-00000.csv"

    # Networkx Call
    pd_df = pd.read_csv(input_data_path, delimiter='\t', names=['src', 'dst'])
    G = nx.DiGraph()
    for i in range(0, len(pd_df)):
        G.add_edge(pd_df['src'][i], pd_df['dst'][i])
    nx_pr = nx.pagerank(G, alpha=0.85)
    nx_pr = sorted(nx_pr.items(), key=lambda x: x[0])

    # Cugraph snmg pagerank Call
    cluster = LocalCUDACluster(threads_per_worker=1)
    client = Client(cluster)

    t0 = time.time()
    chunksize = dcg.get_chunksize(input_data_path)
    ddf = dask_cudf.read_csv(input_data_path,
                             chunksize=chunksize,
                             delimiter='\t',
                             names=['src', 'dst'],
                             dtype=['int32', 'int32'])
    y = ddf.to_delayed()
    x = client.compute(y)
    wait(x)
    t1 = time.time()
    print("Reading Csv time: ", t1 - t0)
    new_ddf = dcg.drop_duplicates(x)
    t2 = time.time()
    pr = dcg.pagerank(new_ddf, alpha=0.85, max_iter=50)
    wait(pr)
    t3 = time.time()
    print("Running PR algo time: ", t3 - t2)
    t4 = time.time()
    res_df = pr.compute()
    t5 = time.time()
    print("Compute time: ", t5 - t4)
    print(res_df)

    # Use tempfile.mkstemp() to get a temp file name. Close and delete the file
    # so to_csv() can create it using the unique temp name
    (tempfileHandle, tempfileName) = tempfile.mkstemp(suffix=".csv",
                                                      prefix="pagerank_")
    os.close(tempfileHandle)
    os.remove(tempfileName)

    # For bigdatax4, chunksize=100000000 to avoid oom on write csv
    t6 = time.time()
    res_df.to_csv(tempfileName, header=False, index=False)
    t7 = time.time()
    print("Write csv time: ", t7 - t6)

    # Comparison
    err = 0
    tol = 1.0e-05
    for i in range(len(res_df)):
        if (abs(res_df['pagerank'][i] - nx_pr[i][1]) > tol * 1.1):
            err = err + 1
    print("Mismatches:", err)
    assert err < (0.02 * len(res_df))

    client.close()
    cluster.close()
    os.remove(tempfileName)
Пример #13
0
class MGContext:
    """Utility Context Manager to start a multi GPU context using dask_cuda

    Parameters:
    -----------

    number_of_devices : int
        Number of devices to use, verification must be done prior to call to
        ensure that there are enough devices available. If not specified, the
        cluster will be initialized to use all visible devices.
    rmm_managed_memory : bool
        True to enable managed memory (UVM) in RMM as part of the
        cluster. Default is False.
    p2p : bool
        Initialize UCX endpoints if True. Default is False.
    """
    def __init__(self,
                 number_of_devices=None,
                 rmm_managed_memory=False,
                 p2p=False):
        self._number_of_devices = number_of_devices
        self._rmm_managed_memory = rmm_managed_memory
        self._client = None
        self._p2p = p2p
        self._cluster = CUDACluster(
            n_workers=self._number_of_devices,
            rmm_managed_memory=self._rmm_managed_memory
        )

    @property
    def client(self):
        return self._client

    @property
    def cluster(self):
        return self._cluster

    def __enter__(self):
        self._prepare_mg()
        return self

    def _prepare_mg(self):
        self._prepare_client()
        self._prepare_comms()

    def _prepare_client(self):
        self._client = Client(self._cluster)
        self._client.wait_for_workers(self._number_of_devices)

    def _prepare_comms(self):
        Comms.initialize(p2p=self._p2p)

    def _close(self):
        Comms.destroy()
        if self._client is not None:
            self._client.close()
        if self._cluster is not None:
            self._cluster.close()

    def __exit__(self, type, value, traceback):
        self._close()
Пример #14
0
def run_error_estimation_distributed(df1, df2, param):
    Ncores = envVars.Ncores
    NWorkers = envVars.NWorkers
    Ngroups = param.JK_NGROUPS

    #setup cluster
    cluster = SGECluster(
        walltime='172800',
        processes=1,
        cores=1,
        env_extra=[
            '#$-pe sge_pe %i' % Ncores,
            '-l m_core=%i' % Ncores, 'mkdir -p /tmp/pag227/dask/dask-scratch',
            'export NUMBA_NUM_THREADS=%i' % Ncores,
            'export OMP_NUM_THREADS=%i' % Ncores
            #                                    'export OMP_NUM_THREADS=1',  # noqa
        ])
    cluster.scale(NWorkers)
    client = Client(cluster)
    time.sleep(10)
    #end setting up cluster

    #send full dataset to the cluster
    future_df1 = client.scatter(df1)
    future_df2 = client.scatter(df2)

    future_params = client.scatter(param)
    res_fullDataset_11 = client.submit(cpw.get_cross_pairwise_ksz, future_df1,
                                       future_df1, future_params)
    res_fullDataset_12 = client.submit(cpw.get_cross_pairwise_ksz, future_df1,
                                       future_df2, future_params)
    res_fullDataset_22 = client.submit(cpw.get_cross_pairwise_ksz, future_df2,
                                       future_df2, future_params)
    #done with the full dataset

    #iterate over partial dataset for the JK
    replicants1 = []  #data to be sent
    replicants2 = []

    if 'jk' in param.JK_RESAMPLING_METHOD.lower():
        all_indx = np.arange(len(df1))
        np.random.shuffle(all_indx)
        indx_to_drop = np.array_split(all_indx, param.JK_NGROUPS)
    for j in range(Ngroups):  # submit data to the cluster
        if 'jk' in param.JK_RESAMPLING_METHOD.lower():  # if method jk
            todrop = indx_to_drop[j]
            replicant1 = df1.drop(df1.index[todrop], inplace=False)
            replicant2 = df2.drop(df2.index[todrop], inplace=False)

            replicants1.append(client.scatter(replicant1))
            replicants2.append(client.scatter(replicant2))
        elif 'bootstrap' in param.JK_RESAMPLING_METHOD.lower():
            indxs = np.random.randint(low=0, high=len(df1), size=len(df1))
            replicant1 = df1.iloc[indxs]
            replicant2 = df2.iloc[indxs]
            replicants1.append(client.scatter(replicant1))
            replicants2.append(client.scatter(replicant2))

    #Now do the JK calculation
    realizations11 = []
    realizations12 = []
    realizations22 = []

    for j in range(Ngroups):
        realizations11.append(
            client.submit(cpw.get_cross_pairwise_ksz, replicants1[j],
                          replicants1[j], future_params))
        realizations12.append(
            client.submit(cpw.get_cross_pairwise_ksz, replicants1[j],
                          replicants2[j], future_params))
        realizations22.append(
            client.submit(cpw.get_cross_pairwise_ksz, replicants2[j],
                          replicants2[j], future_params))
    #extract results
    fullDataset_result11 = res_fullDataset_11.result()
    fullDataset_result12 = res_fullDataset_12.result()
    fullDataset_result22 = res_fullDataset_22.result()

    resampling_result11 = client.gather(realizations11)
    resampling_result12 = client.gather(realizations12)
    resampling_result22 = client.gather(realizations22)
    client.close()
    #    cluster.close()

    results = {
        'full11': fullDataset_result11,
        'full12': fullDataset_result12,
        'full22': fullDataset_result22,
        'resampled11': resampling_result11,
        'resampled12': resampling_result12,
        'resampled22': resampling_result22
    }

    return results
Пример #15
0
class GraphData:
    def __init__(self, graph_num_bars, dask_address):
        self.dask_client = Client(address = dask_address)        
        
        self.currentValue = {'Memory' :{'total_memory':0,
                                        'used_memory':0},
                             'CPU'    :{'cpu_usage':0},
                             'Cluster':{'n_workers':0,
                                        'total_threads':0},
                             'Workers':[]}
        self.update_dask_values()
        
        # Constants data
        self.mem_max_value = self.currentValue['Memory']['total_memory']
        self.util_max_value = 100
        self.graph_num_bars = graph_num_bars
        
        # Data for graphs
        self.cpu_util = [0] * graph_num_bars
        self.mem_util = [0] * graph_num_bars
        # Data for statistics
        self.n_workers = self.num_workers()
        self.total_mem = self.currentValue['Memory']['total_memory']
        self.used_mem  = self.currentValue['Memory']['used_memory']
                
    def close_con(self):
        self.dask_client.close()

    def update_all(self):
        self.update_dask_values()
        
        self.n_workers = self.num_workers()
        self.mem_max_value = self.currentValue['Memory']['total_memory']
        self.total_mem  = self.currentValue['Memory']['total_memory']
        self.used_mem      = self.currentValue['Memory']['used_memory']
        
        self.cpu_util = self.update_graph_val(self.cpu_util, self.cpu_usage())
        self.mem_util = self.update_graph_val(self.mem_util, self.used_mem)
        
        
    def reset(self):
        self.cpu_util = [0] * self.graph_num_bars
        self.mem_util = [0] * self.graph_num_bars
        
        self.mem_max_value = 0
        self.total_mem  = 0
        self.used_mem      = 0

    def update_graph_val(self, values, new_val):
        values_num = len(values)

        if values_num > self.graph_num_bars:
            values = values[values_num - self.graph_num_bars - 1:]
        elif values_num < self.graph_num_bars:
            zero_pad = [0] * (self.graph_num_bars - values_num)
            values = zero_pad + values

        values.append(new_val)
        return values[1:]

    def update_dask_values(self):
            self.worker_info = self.dask_client.scheduler_info()['workers']
            self.currentValue['Memory']['total_memory'] = round(self.available_memory() / (1024**2),2)
            self.currentValue['Memory']['used_memory']  = round(self.used_memory() / (1024**2),2)
            self.currentValue['Memory']['used_memory_percent']  = self.currentValue['Memory']['used_memory'] / self.currentValue['Memory']['total_memory']
            self.currentValue['CPU']['cpu_usage'] = self.cpu_usage()
            self.currentValue['Cluster']['n_workers'] = self.num_workers()
            self.currentValue['Cluster']['total_threads'] = self.num_workers()
            self.currentValue['Workers'] = self.get_worker_stats()
        
    def num_workers(self):
        return len(self.worker_info)
    
    def num_threads(self):
        threads = [worker['nthreads'] for _, worker in self.worker_info.items()]
        return(sum(threads))
    
    def available_memory(self):
        tots = 0
        for w, info in self.worker_info.items():
            tots += info['memory_limit']
        return tots
    
    def used_memory(self):
        tots = 0
        for w, info in self.worker_info.items():
            tots += info['metrics']['memory']
        return tots
    
    def get_worker_stats(self):
        worker_stats=[]
        for w, info in self.worker_info.items():
            stats = {'user':'******',
                     'id' : 'filler',
                     'name' : 'filler',
                     'rawtime':1,
                     'time':1,
                     'command':'',
                     'cpu':1,
                     'memory':1,
                     'local_ports':'filler'}
            stats['address'] = w
            stats['nthreads'] = info['nthreads']
            stats['memory']   = round(info['metrics']['memory'] / (1024**2),2)
            stats['memory_limit'] = round(info['memory_limit'] / (1024**2), 2)
            stats['cpu']      = info['metrics']['cpu'] 
            stats['read']     =  round(info['metrics']['read_bytes'] / (1024**2), 2)
            stats['write']     = round(info['metrics']['write_bytes'] / (1024**2), 2)
            
            worker_stats.append(stats)
        return worker_stats
    
    def cpu_usage(self):
        """ 
        Average cpu utilization across all workers
        """
        usages = []
        for w, info in self.worker_info.items():
            usages.append(info['metrics']['cpu'])
        if len(usages)>0:
            return sum(usages) / len(usages)
        else:
            return 0
def train_eval_denoisers(contrast='CORPD_FBK',
                         n_epochs=200,
                         n_samples=None,
                         model_name=None,
                         model_size=None,
                         loss='mae'):
    job_name = 'denoising_fastmri'
    model_specs = list(get_model_specs(force_res=True))
    if model_name is not None:
        model_specs = [ms for ms in model_specs if ms[0] == model_name]
    if model_size is not None:
        model_specs = [ms for ms in model_specs if ms[1] == model_size]
    n_models = len(model_specs)
    train_cluster = SLURMCluster(
        cores=1,
        job_cpu=20,
        memory='80GB',
        job_name=job_name,
        walltime='20:00:00',
        interface='ib0',
        job_extra=[
            f'--gres=gpu:1',
            '--qos=qos_gpu-t3',
            '--distribution=block:block',
            '--hint=nomultithread',
            '--output=%x_%j.out',
        ],
        env_extra=[
            'cd $WORK/fastmri-reproducible-benchmark',
            '. ./submission_scripts_jean_zay/env_config.sh',
        ],
    )
    train_cluster.adapt(minimum_jobs=0, maximum_jobs=n_models)
    client = Client(train_cluster)
    futures = [
        client.submit(
            # function to execute
            train_denoiser,
            model=(model_fun, kwargs, n_inputs),
            run_id=f'{model_name}_{model_size}_{int(time.time())}',
            contrast=contrast,
            n_epochs=n_epochs,
            n_samples=n_samples,
            loss=loss,
        ) for model_name, model_size, model_fun, kwargs, n_inputs, _, _ in
        model_specs
    ]
    run_ids = client.gather(futures)
    client.close()
    train_cluster.close()
    # eval
    eval_denoisers(
        run_ids,
        job_name=job_name,
        contrast=contrast,
        n_epochs=n_epochs,
        model_name=model_name,
        model_size=model_size,
        n_samples_train=n_samples,
        loss=loss,
    )
    return run_ids
Пример #17
0
def test_status():
    with scheduler_and_workers() as (s, (a, b)):
        c = Client(s.address_to_clients)

        assert c.scheduler_status() == 'OK'
        c.close()
Пример #18
0
class Ingest:
    """
    Ingest class
    Handles running the ingestion pipeline
    """
    def __init__(self,
                 scheduler_address,
                 use_semantic_detection=False,
                 client=None,
                 tmp_dir=None,
                 use_xgboost_postprocess=False,
                 use_rules_postprocess=False):
        """
        :param scheduler_address: Address to existing Dask scheduler
        :param use_semantic_detection: Whether or not to run semantic detection
        :param client: A Dask client. Can be passed in. If None, one will be created to connect to the scheduler
        :param tmp_dir: Path to temporary directory which intermediate files and images will be written
        :param use_xgboost_postprocess: Whether to use the XGBoost postprocessing model
        :param use_rules_postprocess: Whether to utilize the rules postprocessing, which is specific to scientific docs
        """
        logger.info("Initializing Ingest object")
        self.client = client
        if self.client is None:
            logger.info("Setting up client")
            self.client = Client(scheduler_address,
                                 serializers=['msgpack', 'dask'],
                                 deserializers=['msgpack', 'dask', 'pickle'])
            logger.info(self.client)
        self.use_xgboost_postprocess = use_xgboost_postprocess
        self.use_rules_postprocess = use_rules_postprocess
        self.use_semantic_detection = use_semantic_detection
        self.tmp_dir = tmp_dir
        if tmp_dir is None:
            raise ValueError("tmp_dir must be passed in")
        # Create a subdirectory for tmp files
        self.images_tmp = os.path.join(self.tmp_dir, 'images')
        os.makedirs(self.images_tmp, exist_ok=True)

    def __del__(self):
        """Simple client cleanup"""
        if self.client is not None:
            self.client.close()

    def ingest(self,
               pdf_directory,
               dataset_id,
               result_path,
               images_pth,
               skip_ocr=True,
               visualize_proposals=False,
               aggregations=[],
               batch_size=2000,
               compute_word_vecs=False,
               ngram=1):
        """
        Handler for ingestion pipeline.

        Given a directory of PDFs, run the cosmos ingestion pipeline. This will identifies page objects, and optionally
        perform aggregations over objects (eg associating tables with table captions in scientific document pipelines)

        By default, a single parquet file will be written, containing each identified page object and its text.

        If additional aggregations are defined, a parquet file will be written for each defined aggregation.

        For additional information on the aggregations and schemas for the output files, see the documentation.

        :param pdf_directory: path to a directory of PDFs to process
        :param dataset_id: The dataset id for this PDF set
        :param result_path: Path to output directory where parquets and additional images will be written
        :param images_pth: Path to where images can be written to (tmp, not output images directory)
        :param skip_ocr: If True, PDFs with no metadata associated will be skipped. If False, OCR will be performed
        :param visualize_proposals: Debugging option, will write images with bounding boxes from proposals to tmp
        :param aggregations: List of aggregations to run over resulting objects
        :param compute_word_vecs: Whether to compute word vectors over the corpus
        :param ngram: n in ngram for word vecs
        """
        os.makedirs(images_pth, exist_ok=True)
        pdfnames = get_pdf_names(pdf_directory)
        pdf_to_images = functools.partial(Ingest.pdf_to_images, dataset_id,
                                          self.images_tmp)
        logger.info('Starting ingestion. Converting PDFs to images.')
        images = [
            self.client.submit(pdf_to_images, pdf, resources={'process': 1})
            for pdf in pdfnames
        ]

        class TimeOutError(Exception):
            pass

        def raise_timeout(var1, var2):
            raise TimeOutError

        signal.signal(signal.SIGALRM, raise_timeout)

        try:
            for _ in as_completed(images):
                signal.alarm(0)
                signal.alarm(180)
        except TimeOutError:
            images = [i for i in images if i.status == 'finished']
            pass
        else:
            signal.alarm(0)
        logger.info(
            'Done converting to images. Starting detection and text extraction'
        )
        images = [i.result() for i in images]
        images = [i for i in images if i is not None]
        images_queue = [i for il in images for i in il]
        images = []
        iterator = iter(images_queue)
        while chunk := list(islice(iterator, batch_size)):
            partial_propose = functools.partial(propose_and_pad,
                                                visualize=visualize_proposals)
            chunk = self.client.map(partial_propose,
                                    chunk,
                                    resources={'process': 1},
                                    priority=8)
            if self.use_semantic_detection:
                chunk = self.client.map(detect,
                                        chunk,
                                        resources={'GPU': 1},
                                        priority=8)
                chunk = self.client.map(regroup,
                                        chunk,
                                        resources={'process': 1})
                pool_text_ocr_opt = functools.partial(pool_text,
                                                      skip_ocr=skip_ocr)
                chunk = self.client.map(pool_text_ocr_opt,
                                        chunk,
                                        resources={'process': 1})
                if self.use_xgboost_postprocess:
                    chunk = self.client.map(xgboost_postprocess,
                                            chunk,
                                            resources={'process': 1})
                    chunk = [i for i in chunk if i.result() != '']
                    if self.use_rules_postprocess:
                        chunk = self.client.map(rules_postprocess,
                                                chunk,
                                                resources={'process': 1})
            progress(chunk)
            images.extend([i.result() for i in chunk])
        results = []
        for i in images:
            with open(i, 'rb') as rf:
                obj = pickle.load(rf)
                for ind, c in enumerate(obj['content']):
                    bb, cls, text = c
                    scores, classes = zip(*cls)
                    scores = list(scores)
                    classes = list(classes)
                    postprocess_cls = postprocess_score = None
                    if 'xgboost_content' in obj:
                        _, postprocess_cls, _, postprocess_score = obj[
                            'xgboost_content'][ind]
                    final_obj = {
                        'pdf_name': obj['pdf_name'],
                        'dataset_id': obj['dataset_id'],
                        'page_num': obj['page_num'],
                        'img_pth': obj['pad_img'],
                        'pdf_dims': list(obj['pdf_limit']),
                        'bounding_box': list(bb),
                        'classes': classes,
                        'scores': scores,
                        'content': text,
                        'postprocess_cls': postprocess_cls,
                        'postprocess_score': postprocess_score
                    }
                    results.append(final_obj)
        if len(results) == 0:
            logger.info('No objects found')
            return
        result_df = pd.DataFrame(results)
        result_df['detect_cls'] = result_df['classes'].apply(lambda x: x[0])
        result_df['detect_score'] = result_df['scores'].apply(lambda x: x[0])
        for aggregation in aggregations:
            aggregate_df = aggregate_router(result_df,
                                            aggregate_type=aggregation,
                                            write_images_pth=images_pth)
            name = f'{dataset_id}_{aggregation}.parquet'
            aggregate_df.to_parquet(os.path.join(result_path, name),
                                    engine='pyarrow',
                                    compression='gzip')
        if compute_word_vecs:
            make_vecs(result_df, ngram)
        result_df.to_parquet(os.path.join(result_path,
                                          f'{dataset_id}.parquet'),
                             engine='pyarrow',
                             compression='gzip')
def main():
    # dask cluster and client
    n_processes = 1
    n_workers = n_processes * n_jobs

    cluster = SGECluster(
        interface="ib0",
        walltime=walltime,
        memory=f"32 G",
        resource_spec=f"h_vmem=32G",
        scheduler_options={
            "dashboard_address": ":5761",
        },
        job_extra=[
            "-cwd",
            "-V",
            f"-pe smp {n_processes}",
            f"-l disk=32G",
        ],
        local_directory=os.sep.join(
            [os.environ.get("PWD"), "dask-find-emis-pm-space"]),
    )

    client = Client(cluster)

    cluster.scale(jobs=n_jobs)

    time_start = time.time()

    # dask bag over emission_configs
    print(
        f"predicting over {len(emission_configs)} emission configs for {station_id} ..."
    )
    bag_emission_configs = db.from_sequence(emission_configs,
                                            npartitions=n_workers)
    results = bag_emission_configs.map(filter_emission_configs).compute()

    station_diffs_abs = [result[0] for result in results]
    station_diffs_per = [result[1] for result in results]
    key = [key for key in baselines.keys()][0]
    station_diffs_abs = [
        station_diff_abs for station_diff_abs in station_diffs_abs
        if len(station_diff_abs[key]) > 0
    ]
    station_diffs_per = [
        station_diff_per for station_diff_per in station_diffs_per
        if len(station_diff_per[key]) > 0
    ]

    merged_per = {}
    for station_diff_per in station_diffs_per:
        merged_per = {**merged_per, **station_diff_per[key]}

    merged_abs = {}
    for station_diff_abs in station_diffs_abs:
        merged_abs = {**merged_abs, **station_diff_abs[key]}

    station_diffs_per = {key: merged_per}
    station_diffs_abs = {key: merged_abs}

    joblib.dump(
        obs_change_abs,
        f"/nobackup/earlacoa/machinelearning/data_annual/find_emissions_that_match_change_air_quality/{sub_folder}_adjusted_scaled/obs_change_abs_{output}_{station_id}.joblib"
    )
    joblib.dump(
        obs_change_per,
        f"/nobackup/earlacoa/machinelearning/data_annual/find_emissions_that_match_change_air_quality/{sub_folder}_adjusted_scaled/obs_change_per_{output}_{station_id}.joblib"
    )
    joblib.dump(
        baselines,
        f"/nobackup/earlacoa/machinelearning/data_annual/find_emissions_that_match_change_air_quality/{sub_folder}_adjusted_scaled/baselines_{output}_{station_id}.joblib"
    )
    joblib.dump(
        targets,
        f"/nobackup/earlacoa/machinelearning/data_annual/find_emissions_that_match_change_air_quality/{sub_folder}_adjusted_scaled/targets_{output}_{station_id}.joblib"
    )
    joblib.dump(
        target_diffs,
        f"/nobackup/earlacoa/machinelearning/data_annual/find_emissions_that_match_change_air_quality/{sub_folder}_adjusted_scaled/target_diffs_{output}_{station_id}.joblib"
    )
    joblib.dump(
        station_diffs_abs,
        f"/nobackup/earlacoa/machinelearning/data_annual/find_emissions_that_match_change_air_quality/{sub_folder}_adjusted_scaled/station_diffs_abs_{output}_{station_id}.joblib"
    )
    joblib.dump(
        station_diffs_per,
        f"/nobackup/earlacoa/machinelearning/data_annual/find_emissions_that_match_change_air_quality/{sub_folder}_adjusted_scaled/station_diffs_per_{output}_{station_id}.joblib"
    )

    time_end = time.time() - time_start
    print(
        f"completed in {time_end:0.2f} seconds, or {time_end / 60:0.2f} minutes, or {time_end / 3600:0.2f} hours"
    )

    client.close()
    cluster.close()
Пример #20
0
class BetflagScraper(SiteScraper):
    def __init__(self,
                 sport='calcio',
                 bet_type='1x2',
                 max_additional_data=-1,
                 cluster=None,
                 offline=True,
                 live=True,
                 headless=True):
        if max_additional_data == -1:
            max_additional_data = math.inf
        self.max_additional_data = max_additional_data
        self.n_additional_data_loaded = [
            max_additional_data, max_additional_data
        ]
        self.sport = 'calcio'
        self.bet_type = '1x2'
        self.url = 'https://www.betflag.it/exchange'
        self.refresh_period = 600  # seconds
        self.n_driver = 1
        self.offline = offline
        if not self.offline:
            self.live = True
        else:
            self.live = live

        self.headless = headless

        options = Options()
        if self.headless:
            options.headless = True
        self.driver = webdriver.Chrome(ChromeDriverManager().install(),
                                       chrome_options=options)
        if self.offline:
            self.driver.execute_script(f"window.name = 'offline';")
            if self.live:
                self.driver.execute_script(
                    f"window.open('{self.url}', 'live');")
        else:
            self.driver.execute_script(f"window.name = 'live';")

        # Setup the driver
        self.setup_drivers(sport=sport, bet_type=bet_type)
        self.last_refresh = datetime.datetime.now()
        # Login
        time.sleep(1)
        # self.driver.find_element_by_xpath('//*[@id="btnLoginModal"]').click()
        # time.sleep(0.75)
        # self.driver.find_element_by_xpath('//*[@id="LoginUsername"]').send_keys('username')
        # self.driver.find_element_by_xpath('//*[@id="LoginPassword"]').send_keys('password')
        # self.driver.find_element_by_xpath('//*[@id="BtnLoginNew2"]').click()
        if cluster is not None:
            self.client = Client(cluster)
        else:
            self.client = Client(processes=False)

    def setup_drivers(self, sport, bet_type):
        for window in self.driver.window_handles:
            self.driver.switch_to.window(window)
            time.sleep(0.05)
            self.driver.get(self.url)

            # Close +18 warning
            try:
                WebDriverWait(self.driver, timeout=15).until(
                    expected_conditions.element_to_be_clickable(
                        (By.XPATH, '//*[@id="Button1"]')))
                time.sleep(0.5)
                self.driver.find_element_by_xpath('//*[@id="Button1"]').click()
            except TimeoutException:
                pass
            except ElementClickInterceptedException:
                pass

            try:
                WebDriverWait(self.driver, timeout=15).until(
                    expected_conditions.element_to_be_clickable(
                        (By.XPATH, '//*[@id="Button3"]')))
                time.sleep(0.5)
                self.driver.find_element_by_xpath('//*[@id="Button3"]').click()
            except TimeoutException:
                pass
            except ElementClickInterceptedException:
                pass

            # Close promo-login
            try:
                time.sleep(2)
                WebDriverWait(self.driver, timeout=25).until(
                    expected_conditions.element_to_be_clickable(
                        (By.XPATH, '//*[@id="PromoPopup"]/div[2]/div[2]')))
                self.driver.find_element_by_xpath(
                    '//*[@id="PromoPopup"]/div[2]/div[2]').click()
            except TimeoutException:
                pass

        time.sleep(1)
        self.set_live()
        # Set sport
        self.set_sport(sport)
        # Load additional data
        self.load_additional_data()
        # Set bet_type
        self.set_bet_type(bet_type)

    def set_sport(self, sport):
        # Check if actual sport is equal to the new sport
        if self.sport == sport:
            return
        flag = True
        for window in self.driver.window_handles:
            self.driver.switch_to.window(window)
            time.sleep(0.05)
            # Find the sport button then click it
            for el in self.driver.find_elements_by_xpath(
                    '//*[@id="MenuScroller"]/ul/li'):
                if el.text.lower() == sport:
                    el.click()
                    flag = False
                    break
            if flag:
                # If it isn't present close the driver and remove it from the drivers list
                print(f'Sport: {sport} is not available!')
                # self.driver.close()
            flag = True
        self.sport = sport

    def set_bet_type(self, bet_type):
        # Check if actual bet_type is equal to the new bet_type
        if self.bet_type == bet_type or self.sport == 'calcio':
            self.bet_type = bet_type
            return

        if self.bet_type != '1x2':
            is_uo = self.bet_type[:2] == 'uo'
            if is_uo:
                n_goal = self.bet_type[-3:]
                for window in self.driver.window_handles:
                    self.driver.switch_to.window(window)
                    time.sleep(0.05)
                    self.driver.find_element_by_xpath(
                        f"//a[contains(text(), 'Under And Over {n_goal}')]"
                    ).find_element_by_xpath('..').click()
        else:
            if bet_type == '12':
                self.bet_type = bet_type

    def set_live(self):
        # Click on last minute on the first driver
        if self.offline:
            self.driver.switch_to.window('offline')
            time.sleep(0.05)
            try:
                WebDriverWait(self.driver, timeout=15).until(
                    expected_conditions.element_to_be_clickable((
                        By.XPATH,
                        '/html/body/form/section/div[9]/div[3]/nav/div[2]/ul/li[1]/button'
                    ))).click()
            except TimeoutException:
                pass

        # Click on live on the second driver
        if self.live:
            self.driver.switch_to.window('live')
            time.sleep(0.05)
            try:
                WebDriverWait(self.driver, timeout=15).until(
                    expected_conditions.element_to_be_clickable(
                        (By.XPATH,
                         '//*[@id="livenowbutton"]/button'))).click()
            except TimeoutException:
                pass

    def load_additional_data(self):
        # Add data
        self.n_additional_data_loaded = []
        time.sleep(2.5)
        for window in self.driver.window_handles:
            self.driver.switch_to.window(window)
            time.sleep(0.05)
            i = 0
            while i < self.max_additional_data:
                try:
                    self.driver.find_element_by_class_name('addEvents').click()
                    time.sleep(0.25)
                    i += 1
                except NoSuchElementException:
                    break
            self.n_additional_data_loaded.append(i)
            # Scroll to the top of the page
            self.driver.execute_script(f"window.scrollTo(0,0)")
        # Wait until they are loaded
        self.scroll_page()

    def scroll_page(self,
                    wait_period=0.75,
                    jump=500,
                    jump_per_additional_content=4):
        for window, n_additional_data_loaded in zip(
                self.driver.window_handles, self.n_additional_data_loaded):
            self.driver.switch_to.window(window)
            time.sleep(0.05)
            if n_additional_data_loaded > 10:
                _wait_period = wait_period / math.log(n_additional_data_loaded)
            else:
                _wait_period = wait_period
            for i in range(
                (n_additional_data_loaded + 1) * jump_per_additional_content):
                self.driver.execute_script(
                    f"window.scrollTo(0,{int(jump * i)})")
                time.sleep(_wait_period)

    def refresh_pages(self):
        self.setup_drivers(self.sport, self.bet_type)
        self.last_refresh = datetime.datetime.now()

    def get_data(self):
        data = {}
        # Refresh the page every self.refresh_period seconds
        if self.last_refresh + datetime.timedelta(
                seconds=self.refresh_period) < datetime.datetime.now():
            self.refresh_pages()
        else:
            # Otherwise scroll the page in order to be sure that all the bets are loaded
            # self.scroll_page(0.01, jump=1000, jump_per_additional_content=1)
            pass
        futures = []
        data = {}
        for window in self.driver.window_handles:
            # Extract HTML code
            self.driver.switch_to.window(window)
            time.sleep(0.05)
            content_html = self.driver.find_element_by_class_name(
                'containerEvents').get_attribute('innerHTML')
            soup = BeautifulSoup(content_html, 'html.parser')
            # Scrape the data
            divs = soup.find_all('div', 'row-e')
            futures = [
                self.client.submit(parse_row, str(div), self.bet_type)
                for div in divs
            ]
            results = [future.result() for future in futures]
            data.update({key: value for key, value in results if value})

        return data

    def bet(self):
        pass

    def close(self, close_client=True):
        self.driver.quit()
        if close_client:
            self.client.close()
Пример #21
0
def main(args):
    cluster_options = get_cluster_options(args)
    Cluster = cluster_options["class"]
    cluster_args = cluster_options["args"]
    cluster_kwargs = cluster_options["kwargs"]
    scheduler_addr = cluster_options["scheduler_addr"]

    if args.sched_addr:
        client = Client(args.sched_addr)
    else:
        filterwarnings("ignore",
                       message=".*NVLink.*rmm_pool_size.*",
                       category=UserWarning)

        cluster = Cluster(*cluster_args, **cluster_kwargs)
        if args.multi_node:
            import time

            # Allow some time for workers to start and connect to scheduler
            # TODO: make this a command-line argument?
            time.sleep(15)

        client = Client(scheduler_addr if args.multi_node else cluster)

    if args.type == "gpu":
        client.run(
            setup_memory_pool,
            pool_size=args.rmm_pool_size,
            disable_pool=args.disable_rmm_pool,
            log_directory=args.rmm_log_directory,
        )
        # Create an RMM pool on the scheduler due to occasional deserialization
        # of CUDA objects. May cause issues with InfiniBand otherwise.
        client.run_on_scheduler(
            setup_memory_pool,
            pool_size=1e9,
            disable_pool=args.disable_rmm_pool,
            log_directory=args.rmm_log_directory,
        )

    scheduler_workers = client.run_on_scheduler(get_scheduler_workers)
    n_workers = len(scheduler_workers)
    client.wait_for_workers(n_workers)

    # Allow the number of chunks to vary between
    # the "base" and "other" DataFrames
    args.base_chunks = args.base_chunks or n_workers
    args.other_chunks = args.other_chunks or n_workers

    if args.all_to_all:
        all_to_all(client)

    took_list = []
    for _ in range(args.runs - 1):
        took_list.append(run(client, args, n_workers, write_profile=None))
    took_list.append(
        run(client, args, n_workers,
            write_profile=args.profile))  # Only profiling the last run

    # Collect, aggregate, and print peer-to-peer bandwidths
    incoming_logs = client.run(
        lambda dask_worker: dask_worker.incoming_transfer_log)
    bandwidths = defaultdict(list)
    total_nbytes = defaultdict(list)
    for k, L in incoming_logs.items():
        for d in L:
            if d["total"] >= args.ignore_size:
                bandwidths[k, d["who"]].append(d["bandwidth"])
                total_nbytes[k, d["who"]].append(d["total"])
    bandwidths = {(scheduler_workers[w1].name, scheduler_workers[w2].name): [
        "%s/s" % format_bytes(x)
        for x in numpy.quantile(v, [0.25, 0.50, 0.75])
    ]
                  for (w1, w2), v in bandwidths.items()}
    total_nbytes = {(
        scheduler_workers[w1].name,
        scheduler_workers[w2].name,
    ): format_bytes(sum(nb))
                    for (w1, w2), nb in total_nbytes.items()}

    broadcast = (False if args.shuffle_join else
                 (True if args.broadcast_join else "default"))

    t_runs = numpy.empty(len(took_list))
    if args.markdown:
        print("```")
    print("Merge benchmark")
    print("-------------------------------")
    print(f"backend        | {args.backend}")
    print(f"merge type     | {args.type}")
    print(f"rows-per-chunk | {args.chunk_size}")
    print(f"base-chunks    | {args.base_chunks}")
    print(f"other-chunks   | {args.other_chunks}")
    print(f"broadcast      | {broadcast}")
    print(f"protocol       | {args.protocol}")
    print(f"device(s)      | {args.devs}")
    print(f"rmm-pool       | {(not args.disable_rmm_pool)}")
    print(f"frac-match     | {args.frac_match}")
    if args.protocol == "ucx":
        print(f"tcp            | {args.enable_tcp_over_ucx}")
        print(f"ib             | {args.enable_infiniband}")
        print(f"nvlink         | {args.enable_nvlink}")
    print(f"data-processed | {format_bytes(took_list[0][0])}")
    print("===============================")
    print("Wall-clock     | Throughput")
    print("-------------------------------")
    for idx, (data_processed, took) in enumerate(took_list):
        throughput = int(data_processed / took)
        m = format_time(took)
        m += " " * (15 - len(m))
        print(f"{m}| {format_bytes(throughput)}/s")
        t_runs[idx] = float(format_bytes(throughput).split(" ")[0])
    print("===============================")
    if args.markdown:
        print("\n```")

    if args.plot is not None:
        plot_benchmark(t_runs, args.plot, historical=True)

    if args.backend == "dask":
        if args.markdown:
            print(
                "<details>\n<summary>Worker-Worker Transfer Rates</summary>\n\n```"
            )
        print("(w1,w2)     | 25% 50% 75% (total nbytes)")
        print("-------------------------------")
        for (d1, d2), bw in sorted(bandwidths.items()):
            fmt = ("(%s,%s)     | %s %s %s (%s)" if args.multi_node
                   or args.sched_addr else "(%02d,%02d)     | %s %s %s (%s)")
            print(fmt % (d1, d2, bw[0], bw[1], bw[2], total_nbytes[(d1, d2)]))
        if args.markdown:
            print("```\n</details>\n")

    if args.multi_node:
        client.shutdown()
        client.close()
Пример #22
0
def tsmask_one_iteration(ncpu, mem, block, crs, out_crs, start_of_epoch,
                         end_of_epoch, dirc, loc_str):

    [y1, y2, x1, x2] = block

    #Datacube object

    dc = datacube.Datacube(app='load_clearsentinel')

    tg_ds = tsf.load_s2_nbart_dask(dc, y1, y2, x1, x2, start_of_epoch,
                                   end_of_epoch, {
                                       "time": 1,
                                   }, crs, out_crs)

    memstr = str(mem) + 'GB'

    client = Client(n_workers=ncpu, threads_per_worker=2, memory_limit=memstr)

    client.compute(tg_ds)

    client.close()

    irow = tg_ds['y'].size
    icol = tg_ds['x'].size
    tn = tg_ds['time'].size

    print(tn, irow, icol)

    # Create numpy array to store TSmask results
    tsmask = np.zeros((tn, irow, icol), dtype=np.uint8)

    print("Time series cloud and shadow detection for area (", y1, y2, x1, x2,
          ")")

    # Run time series cloud mask algorithm on the data
    tsmask = tsmask_filter_onearea(tg_ds, ncpu, tsmask)

    print("Begin applying spatial filter")

    results = []

    # number of process for the  pool object
    number_of_workers = ncpu

    # Create a Pool object with a number of processes
    p = Pool(number_of_workers)

    # create a list of scene
    paralist = [tsmask[i, :, :] for i in range(tn)]

    # Start runing the spatial filter function using a pool of indepedent processes
    results = p.map(cym.spatial_filter_v2, paralist)

    # Finish the parallel runs
    p.close()

    # Join the results and put them back in the correct order
    p.join()

    # Save the cloud/shadow masks to the 'tsmask' dataarray in the s2_ds dataset
    for i in range(tn):
        tsmask[i, :, :] = results[i]

    print("Begin calculting long term of the indice set")
    bgids = bg_indices_one_iteration(ncpu, tg_ds, dirc, loc_str, tsmask,
                                     start_of_epoch, end_of_epoch)

    print(bgids.shape)

    # print("Begin creating input features for Nmask ANN model")
    # create_ip_data(tg_ds, bgids, loc_str, dirc)

    tg_ds.close()
Пример #23
0
def main(sample_run=True,
         sens_run=False,
         cfg_file=None,
         year_s=1979,
         year_e=2018):
    """Run the STJ Metric given a configuration file."""
    # Generate an STJProperties, allows easy access to these properties across methods.

    if sample_run:
        # ----------Sample test case-------------
        jf_run = JetFindRun('{}/stj_config_sample.yml'.format(CFG_DIR))
        date_s = dt.datetime(2016, 1, 1)
        date_e = dt.datetime(2016, 1, 3)

    elif cfg_file is not None:
        print(f'Run with {cfg_file}')
        jf_run = JetFindRun(cfg_file)

    else:
        # ----------Other cases-------------
        # jf_run = JetFindRun('{}/stj_kp_erai_daily.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_merra_daily.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_ncep_monthly.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_jra55_theta_mon.yml'.format(CFG_DIR))

        # Four main choices
        jf_run = JetFindRun('{}/stj_config_erai_theta.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_erai_theta_daily.yml'.format(CFG_DIR))
        # jf_run = JetFindRun(
        #     '{}/stj_config_erai_monthly_davisbirner_gv.yml'.format(CFG_DIR)
        # )

        # jf_run = JetFindRun('{}/stj_config_cfsr_mon.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_cfsr_day.yml'.format(CFG_DIR))

        # jf_run = JetFindRun('{}/stj_config_jra55_mon.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_jra55_day.yml'.format(CFG_DIR))

        # jf_run = JetFindRun('{}/stj_config_merra_monthly.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_merra_daily.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_jra55_monthly_cades.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_cfsr_monthly.yml'.format(CFG_DIR))
        # jf_run = JetFindRun('{}/stj_config_jra55_daily_titan.yml'.format(CFG_DIR))

        # ---------U-Max----------
        # jf_run = JetFindRun('{}/stj_umax_erai_pres.yml'.format(CFG_DIR))
        # ---Davis-Birner (2016)--
        # jf_run = JetFindRun('{}/stj_config_erai_monthly_davisbirner_gv.yml'
        #                     .format(CFG_DIR))

    if not sample_run:
        date_s = dt.datetime(year_s, 1, 1)
        date_e = dt.datetime(year_e, 12, 31)

    cpus = multiprocessing.cpu_count()
    if cpus % 4 == 0:
        _threads = 4
    elif cpus % 3 == 0:
        _threads = 3
    else:
        _threads = 2

    cluster = LocalCluster(n_workers=cpus // _threads,
                           threads_per_worker=_threads)

    client = Client(cluster)
    jf_run.log.info(client)

    if sens_run:
        sens_param_vals = {
            'pv_value': np.arange(1.0, 4.5, 0.5),
            'fit_deg': np.arange(3, 9),
            'min_lat': np.arange(2.5, 15, 2.5),
            'max_lat': np.arange(60., 95., 5.)
        }

        for sens_param in sens_param_vals:
            jf_run.run_sensitivity(sens_param=sens_param,
                                   sens_range=sens_param_vals[sens_param],
                                   date_s=date_s,
                                   date_e=date_e)
    else:
        jf_run.run(date_s, date_e)
    client.close()
    jf_run.log.info('JET FINDING COMPLETE')
Пример #24
0
def test_dask_serial_gridder(show_plots=False):
    """
    Unit test that compares the standard gridder in CNGI with that in CASA.
    For the test to run sis14_twhya_field5_mstrans_lsrk_old.zarr and sis14_twhya_field5_mstrans_lsrk_ximage.zarr
    are required (placed in cngi_prototype/cngi/data/).

    Parameters
    ----------
    show_plots : bool
        If true plots are shown of CASA and CNGI gridded visibilities and dirty images.
    Returns
    -------
    pass_test : bool
        Is True if CNGI values are close enough to CASA values.
    """

    import xarray as xr
    import cngi
    import os
    import tests.gridding_convolutional_kernels as gck
    from cngi.gridding import serial_grid_dask_sparse
    import matplotlib.pylab as plt
    import numpy as np
    from dask.distributed import Client
    import dask.array as da
    from scipy.fftpack import fft2, ifft2, fftshift, ifftshift
    import time

    cngi_path = os.path.dirname(cngi.__file__)
    cngi_prototype_path = cngi_path[:cngi_path.rfind('/')]

    # Load measurement dataset
    outfile = cngi_prototype_path + '/data/sis14_twhya_field5_mstrans_lsrk_old.zarr/0'

    vis_dataset = xr.open_zarr(outfile)

    # Gridding Parameters
    dtr = np.pi / (3600 * 180)  # Degrees to Radians
    n_xy = np.array(
        [200, 400]
    )  # 2048                                                                 # 2 element array containing number of pixels for x (u and l) and y (v and m) axes.
    padding = 1.2  # Padding factor
    n_xy_padded = (padding * n_xy).astype(
        int)  # 2 element array containg number of pixels with padding
    delta_lm = np.array(
        [-0.08 * dtr, 0.08 * dtr]
    )  # Image domain cell size converted from arcseconds to radians (negative is due to axis direction being different from indx increments)
    delta_uv = np.array([
        1 / (n_xy_padded[0] * delta_lm[0]), 1 / (n_xy_padded[1] * delta_lm[1])
    ])  # Visibility domain cell size

    # Creating gridding kernel (same as CASA)
    support = 7  # The support in CASA is defined as the half support, which is 3
    oversampling = 100
    cgk_1D = gck.create_prolate_spheroidal_kernel_1D(oversampling, support)
    cgk, cgk_image = gck.create_prolate_spheroidal_kernel(
        oversampling, support, n_xy_padded)

    # Data used for gridding
    grid_data = vis_dataset.data_vars['DATA']
    uvw = vis_dataset.data_vars['UVW']
    freq_chan = vis_dataset.coords['chan'].values
    weight = vis_dataset.data_vars['WEIGHT']
    weight_avg = xr.DataArray.expand_dims(
        (weight[:, :, 0] + weight[:, :, 1]) / 2, dim=['n_pol'], axis=2
    )  # Casa averages the weights for different polarizations. See code/msvis/MSVis/VisImagingWeight.cc VisImagingWeight::unPolChanWeight
    # The polarization dimention is again added.

    flag_row = vis_dataset.data_vars['FLAG_ROW']
    flag = vis_dataset.data_vars['FLAG']
    n_uv = n_xy_padded

    #
    n_imag_chan = 1  # Making only one continuum image.
    n_imag_pol = 1  # Imaging only one polarization
    sum_weight = np.zeros((n_imag_chan, n_imag_pol), dtype=np.double)
    n_chan = vis_dataset.dims['chan']
    n_pol = 1  # vis_dataset.dims['pol'] #just using the first polarization
    vis_grid = np.zeros(
        (n_imag_chan, n_imag_pol, n_xy_padded[0], n_xy_padded[1]),
        dtype=np.complex128)  # Creating an empty grid

    chan_map = (np.zeros(n_chan)).astype(
        np.int
    )  # np.arange(0,n_chan) for cube, n_chan array which maps to the number of channels in image (cube)
    pol_map = (np.zeros(n_pol)).astype(np.int)

    grid_parms = {}
    grid_parms['n_imag_chan'] = n_imag_chan
    grid_parms['n_imag_pol'] = n_imag_pol
    grid_parms['n_uv'] = n_uv
    grid_parms['delta_lm'] = delta_lm
    grid_parms['oversampling'] = oversampling
    grid_parms['support'] = support

    n_workers = 2
    threads_per_worker = 1
    memory_limit = '4GB'
    client = Client(n_workers=n_workers,
                    threads_per_worker=threads_per_worker,
                    memory_limit=memory_limit)
    print(client)

    start = time.time()
    grids_and_sum_weights = da.blockwise(
        serial_grid_dask_sparse,
        ("n_time", "n_switch", "n_imag_chan", "n_imag_pol", "n_u", "n_v"),
        grid_data, ("n_time", "n_baseline", "n_chan", "n_pol"),
        uvw, ("n_time", "n_baseline", "uvw"),
        weight_avg, ("n_time", "n_baseline", "n_pol"),
        flag_row, ("n_time", "n_baseline"),
        flag, ("n_time", "n_baseline", "n_vis_chan", "n_vis_pol"),
        new_axes={
            "n_switch": 2,
            "n_imag_chan": n_imag_chan,
            "n_imag_pol": n_imag_pol,
            "n_u": n_xy_padded[0],
            "n_v": n_xy_padded[1]
        },
        adjust_chunks={"n_time": 1},
        freq_chan=freq_chan,
        chan_map=chan_map,
        pol_map=pol_map,
        cgk_1D=cgk_1D,
        grid_parms=grid_parms,
        dtype=complex)
    grid_and_sum_weight = (grids_and_sum_weights.sum(axis=0))
    # dask_grid.visualize(filename='dask_grid.svg')

    grid_and_sum_weight = grid_and_sum_weight.compute()
    vis_grid = grid_and_sum_weight[0, :, :, :, :].todense()
    sum_weight = grid_and_sum_weight[1, 0, 0, 0, 0]
    print('Gridding Time Dask (s): ', time.time() - start)

    client.close()

    # Create Dirty Image and correct for gridding convolutional kernel
    uncorrected_dirty_image = fftshift(ifft2(ifftshift(
        vis_grid[0, 0, :, :]))) * (
            (n_xy_padded[0] * n_xy_padded[1]) / np.sum(sum_weight))
    corrected_dirty_image = np.real(uncorrected_dirty_image / cgk_image)

    # Remove Padding
    start_xy = (n_xy_padded // 2 - n_xy // 2)
    end_xy = start_xy + n_xy
    corrected_dirty_image = corrected_dirty_image[start_xy[0]:end_xy[0],
                                                  start_xy[1]:end_xy[1]]

    # Normalize results
    # corrected_dirty_image = corrected_dirty_image/(np.max(np.abs(corrected_dirty_image)))

    # Load CASA data
    outfile = cngi_prototype_path + '/data/sis14_twhya_field5_mstrans_lsrk_ximage.zarr'
    ximage_dataset = xr.open_zarr(outfile)
    casa_corrected_dirty_image = ximage_dataset['residual'].values[:, :, 0, 0]

    if show_plots == True:
        fig0, ax0 = plt.subplots(1, 2, sharey=True)
        im0 = ax0[0].imshow(casa_corrected_dirty_image)
        im1 = ax0[1].imshow(corrected_dirty_image)
        ax0[0].title.set_text('CASA Dirty Image')
        ax0[1].title.set_text('CNGI Dirty Image')
        fig0.colorbar(im0, ax=ax0[0], fraction=0.046, pad=0.04)
        fig0.colorbar(im1, ax=ax0[1], fraction=0.046, pad=0.04)
        plt.show()

        plt.figure()
        plt.imshow(casa_corrected_dirty_image - corrected_dirty_image)
        plt.title('Difference Dirty Image')
        plt.colorbar()
        plt.show()

    corrected_dirty_image = corrected_dirty_image / np.max(
        np.abs(corrected_dirty_image))
    casa_corrected_dirty_image = casa_corrected_dirty_image / np.max(
        np.abs(casa_corrected_dirty_image))

    # Calculate max error
    max_error_corrected_dirty_image = np.max(
        np.abs(corrected_dirty_image - casa_corrected_dirty_image))

    # Calculate root mean square error
    rms_error_corrected_dirty_image = np.linalg.norm(
        corrected_dirty_image - casa_corrected_dirty_image, 'fro')

    pass_test = False
    print(
        '*******************************************************************************'
    )
    print(
        'Gridded and image values have been normalized before calculating error values'
    )
    print('Max error between CASA and CNGI dirty images ',
          max_error_corrected_dirty_image)
    print('RMS error between CASA and CNGI dirty images ',
          rms_error_corrected_dirty_image)
    if (max_error_corrected_dirty_image <
            1.2886e-07) and (rms_error_corrected_dirty_image < 1.616e-06):
        print('Test Pass')
        pass_test = True
    else:
        print('Test Fail')
        pass_test = False
    print(
        '*******************************************************************************'
    )

    return pass_test
Пример #25
0
def launch_python_post():
	curDir = os.path.dirname(os.path.abspath(__file__)) 
	logger = PyPostTools.pyPostLogger()

	logger.write("Initializing WRF Python Post-Processing Program")
	#Step 1: Load program settings
	logger.write(" 1. Application Initalization")
	logger.write("  - Loading control file, python_post_control.txt")
	_pySet = PyPostSettings.PyPostSettings()
	logger.write("  - Success!")
	logger.write("  - Testing Environmental Variables")
	try:
		dask_nodes = os.environ["PYTHON_POST_NODES"]
		dask_threads = os.environ["PYTHON_POST_THREADS"]	
		postDir = os.environ["PYTHON_POST_DIR"]
		targetDir = os.environ["PYTHON_POST_TARG_DIR"]
	except KeyError:
		logger.write("***FAIL*** KeyError encountered while trying to access important environmental variables, abort.")
		sys.exit("")
	logger.write("  - Success!")
	logger.write("  - Initializing Dask (" + str(dask_nodes) + " Nodes Requested), Collecting routines needed")
	_routines = Routines.Routines()
	logger.write("   - Async IO Loop initialized...")	
	def f(scheduler_port):
		async def g(port):
			s = Scheduler(port=scheduler_port)
			await s
			await s.finished()
		asyncio.get_event_loop().run_until_complete(g(scheduler_port))
	# Starts the scheduler in its own process - needed as otherwise it will 
	# occupy the program and make it do an infinite loop
	process = Process(target=f, args=(scheduler_port,))
	process.start()
	logger.write("   - Dask Scheduler initialized (Port " + str(scheduler_port) + ")...")
	try:
		dask_client = Client("tcp://" + socket.gethostname() + ":" + str(scheduler_port), timeout=30)
	except OSError:
		logger.write("  <-> Dask Client could not be created, timeout error.")
		process.terminate()
		sys.exit()
	logger.write("   - Dask Client initialized...")
	logger.write("   - Writing Dask Worker Job Files...")
	with PyPostTools.cd(targetDir):
		writeFile = PyPostTools.write_job_file(socket.gethostname(), scheduler_port, project_name="climate_severe", queue="debug-cache-quad", nodes=dask_nodes, wall_time=60, nProcs=1)
		if(writeFile == False):
			dask_client.close()
			logger.write("   - Failed to write job file, are you missing an important parameter?")
			sys.exit("")
			return
		else:
			logger.write("   - Dask Worker Job File Written, Submitting to Queue.")
			PyPostTools.popen("chmod +x dask-worker.job")
			PyPostTools.popen("qsub dask-worker.job")
	# Wait here for workers.
	logger.write("   -> Worker Job submitted to queue, waiting for workers...")
	while len(dask_client.scheduler_info()['workers']) < int(dask_nodes):
		time.sleep(2)
	logger.write("   -> Workers are now connected.")
	logger.write("  - Success!")
	logger.write(" 1. Done.")
	logger.write(" 2. Start Post-Processing Calculations")
	start_calculations(dask_client, _routines, dask_threads, process)
	logger.write(" 2. Done.")
	logger.write(" 3. Generating Figures")
	logger.write("  - Collecting files from target directory (" + targetDir + ").")
	fList3 = sorted(glob.glob(targetDir + "WRFPRS_F*"))
	logger.write("  - " + str(len(fList3)) + " files have been found.")
	logger.write(" -> Pushing run_plotting_routines() to dask.")
	fullDict = _pySet.get_full_dict()
	plotting_future = start_plotting(dask_client, fullDict, dask_threads, process)
	wait(plotting_future)
	result_plot = dask_client.gather(plotting_future)[0]
	if(result_plot != 0):
		logger.write("***FAIL*** An error occured in plotting method, check worker logs for more info.")
		logger.close()
		sys.exit("")	
	logger.write(" 3. Done.")
	logger.write(" 4. Final Steps")
	
	logger.write(" 4. Done, Closing Dask Client.")
	# Close the client object
	dask_client.retire_workers(workers=dask_client.scheduler_info()['workers'], close=True)
	dask_client.close()	
	logger.write("All Steps Completed.")
	logger.write("***SUCCESS*** Program execution complete.")
	logger.close()
	del dask_client
	process.terminate()
memory='15GB'
from dask_jobqueue import PBSCluster
from dask.distributed import Client
import dask.dataframe as dd

cluster = PBSCluster(cores=1, memory=memory, project='PerfTestPangeo', walltime='04:00:00')
cluster.scale(ask_workers)

c = Client(cluster)

c

from dask.utils import ensure_dict, format_bytes
    
wk = c.scheduler_info()["workers"]

text="Workers= " + str(len(wk))
memory = [w["memory_limit"] for w in wk.values()]
if all(memory):
    text += ", Memory=" + format_bytes(sum(memory))
print(text)
#Workers= 2, 2 cores, Memory=30.00 GB
%time ds=xr.open_zarr('/work/ALT/odatis/eNATL60/zarr/eNATL60-BLBT02-SSH-1h')
#87.9ms
%time mean=ds.sossheig.mean(dim='time_counter')
#310ms
%time mean.load()
#48min13
c.close()
cluster.close()
Пример #27
0
def combine_probes(primer3_dir, util_dir, probes_summary_dir):
    cluster = LocalCluster(n_workers=100, threads_per_worker=1)
    client = Client(cluster)
    # primer3_dir = '/workdir/hs673/Runs/V1/Samples/HIPRFISH_4/11_27_2018/primer3'
    # util_dir = '/workdir/hs673/Runs/V1/Samples/HIPRFISH_4/11_27_2018/utilities'
    probes_filenames = '{}/*_probes.csv'.format(primer3_dir)
    blast_lineage = pd.read_csv('{}/blast_lineage.tab'.format(util_dir),
                                sep='\t')
    taxonomic_levels = [
        'phylum', 'class', 'order', 'family', 'genus', 'species'
    ]
    blast_lineage_slim = blast_lineage.loc[:,
                                           ['molecule_id'] + taxonomic_levels]
    probes = dd.read_csv(probes_filenames)
    probes['molecule_id'] = probes.source.apply(get_molecule_id, meta=('str'))
    probes = probes.merge(blast_lineage_slim, on='molecule_id', how='left')
    probes['superkingdom'] = 2
    extended_taxonomic_levels = [
        'superkingdom', 'phylum', 'class', 'order', 'family', 'genus',
        'species', 'molecule_id'
    ]
    probes_taxa = probes.loc[:, ['seq'] + extended_taxonomic_levels]
    probes_summary = probes_taxa.groupby('seq').apply(
        calculate_source,
        meta=[('superkingdom', 'int'), ('phylum', 'int'), ('class', 'int'),
              ('order', 'int'), ('family', 'int'), ('genus', 'int'),
              ('species', 'int'), ('molecule_id', 'str'),
              ('max_design_level_numeric', 'int'), ('max_design_level', 'str'),
              ('max_design_target', 'int')])
    probes_properties = probes.loc[:, [
        'seq', 'length', 'Tm', 'GC', 'N', 'self_any_th', 'self_end_th',
        'hair-pin', 'quality'
    ]]
    probes_summary = probes_summary.compute()
    probes_summary = probes_summary.reset_index()
    probes_properties = probes_properties.drop_duplicates().compute()
    probes_summary = probes_summary.merge(probes_properties,
                                          on='seq',
                                          how='left')
    client.close()
    probe_summary_filename = '{}/probes_summary.h5'.format(probes_summary_dir)
    probes_summary.loc[:,
                       'max_design_target'] = probes_summary.max_design_target.astype(
                           str)
    taxonomic_levels = [
        'superkingdom', 'phylum', 'class', 'order', 'family', 'genus',
        'species', 'molecule_id'
    ]
    for i in range(8):
        probes_summary_working_design_level = probes_summary.loc[
            probes_summary.max_design_level_numeric >= i, :]
        probes_summary_working_design_level.loc[:,
                                                'design_level'] = taxonomic_levels[
                                                    i]
        probes_summary_working_design_level.loc[:,
                                                'design_target'] = probes_summary_working_design_level.loc[:, taxonomic_levels[
                                                    i]]
        probes_summary_working_design_level.groupby(
            ['design_level', 'design_target']).apply(write_to_hdf,
                                                     probe_summary_filename)
    return
Пример #28
0
def test_dask():
    _cluster = LocalCluster(
        local_dir=os.path.join(ROOT_DIR, "../tests-output/dask-worker-space"))
    _client = Client(_cluster)

    def load1(shard):
        print("load1 {}".format(shard))

        ts = []
        for i in range(1, 5):
            ts.append(
                ["load1_1_{}".format(shard), "load1_1_{}".format(shard), 1])

        return ts

    def load2(shard):
        print("load2 {}".format(shard))
        ts = []
        for i in range(1, 5):
            ts.append(
                ["load2_1_{}".format(shard), "load2_1_{}".format(shard), 1])

        return ts

    def project(ts):
        print("project {}".format(ts))
        return map(lambda t: [t[0], t[1], t[2]], ts)

    def join(ts1, ts2):
        print("join {}, {}".format(ts1, ts2))
        return map(lambda t: ts1[0] + ts2[0], ts1)

    def agg(ts):
        print("agg {}".format(ts))
        pr = map(lambda t: t[2], ts)
        return sum(pr)

    def reduce_(xs):
        print("reduce {}".format(xs))
        return sum(xs)

    data = [1, 2, 3, 4, 5]

    tuples = []
    for s in data:
        tuples1 = dask.delayed(load1)(s)
        tuples2 = dask.delayed(load2)(s)
        projected_tuples1 = dask.delayed(project)(tuples1)
        projected_tuples2 = dask.delayed(project)(tuples2)
        joined_tuples = dask.delayed(join)(projected_tuples1,
                                           projected_tuples2)
        aggs = dask.delayed(agg)(joined_tuples)
        tuples.append(aggs)

    total = dask.delayed(reduce_)(tuples)

    # output = []
    # for x in data:
    #     a = dask.delayed(inc)(x)
    #     for y in a:
    #         b = dask.delayed(double)(y)
    #         c = dask.delayed(add)(a, b)
    #     output.append(c)
    #
    # total = dask.delayed(sum)(output)

    total.visualize(
        filename=os.path.join(ROOT_DIR, "../tests-output/mydask.png"))

    res = total.compute()

    print(res)

    _client.close()
    _cluster.close()
Пример #29
0
def test_uniform_prior():
    lb = np.asarray([1, 1])
    ub = np.asarray([5, 5])
    num_samples = 5
    prior_func = uniform_prior.UniformPrior(lb, ub)

    # multiprocessing mode
    samples = prior_func.draw(num_samples, chunk_size=1)
    assert len(
        samples
    ) == 5, "UniformPrior functional test error, expected chunk count mismatch"
    samples, = dask.compute(samples)
    samples = np.asarray(samples)
    assert samples.shape[
        0] == num_samples, "UniformPrior functional test error, expected sample count mismatch"
    assert samples.shape[
        1] == 1, "UniformPrior functional test error, expected chunk size mismatch"
    assert samples.shape[2] == len(
        lb), "UniformPrior functional test error, dimension mismatch"
    samples = samples.reshape(-1, len(lb))
    axis_mins = np.min(samples, 0)
    axis_maxs = np.max(samples, 0)
    assert axis_mins[0] > lb[0] and axis_maxs[0] < ub[0] and axis_mins[1] > lb[1] and axis_maxs[1] < ub[1], \
        "UniformPrior functional test error, drawn samples out of bounds"

    # Cluster mode
    c = Client()
    samples = prior_func.draw(num_samples, chunk_size=1)
    assert len(
        samples
    ) == 5, "UniformPrior functional test error, expected chunk count mismatch"
    samples, = dask.compute(samples)
    samples = np.asarray(samples)
    assert samples.shape[
        0] == num_samples, "UniformPrior functional test error, expected sample count mismatch"
    assert samples.shape[
        1] == 1, "UniformPrior functional test error, expected chunk size mismatch"
    assert samples.shape[2] == len(
        lb), "UniformPrior functional test error, dimension mismatch"
    samples = samples.reshape(-1, len(lb))
    axis_mins = np.min(samples, 0)
    axis_maxs = np.max(samples, 0)
    assert axis_mins[0] > lb[0] and axis_maxs[0] < ub[0] and axis_mins[1] > lb[1] and axis_maxs[1] < ub[1], \
        "UniformPrior functional test error, drawn samples out of bounds"

    # chunk_size = 2
    samples = prior_func.draw(num_samples, chunk_size=2)
    assert len(
        samples
    ) == 3, "UniformPrior functional test error, expected chunk count mismatch"
    samples, = dask.compute(samples)
    samples = np.asarray(samples)
    assert samples.shape[
        0] == 3, "UniformPrior functional test error, expected sample count mismatch"
    assert samples[-1].shape[
        0] == 2, "UniformPrior functional test error, expected chunk size mismatch"
    assert samples[-1].shape[1] == len(
        lb), "UniformPrior functional test error, dimension mismatch"
    samples = core._reshape_chunks(samples)
    axis_mins = np.min(samples, 0)
    axis_maxs = np.max(samples, 0)
    assert axis_mins[0] > lb[0] and axis_maxs[0] < ub[0] and axis_mins[1] > lb[1] and axis_maxs[1] < ub[1], \
        "UniformPrior functional test error, drawn samples out of bounds"
    c.close()
Пример #30
0
def run_tasks(pl_conf, task_type, task_fn, logging_init_fn):
    # Initialize local dask cluster
    logger.debug('Pipeline configuration: %s', pl_conf)
    cluster = LocalCluster(n_workers=pl_conf.n_workers,
                           threads_per_worker=1,
                           processes=True,
                           memory_limit=pl_conf.memory_limit,
                           ip='0.0.0.0')
    client = Client(cluster)

    # Split total region + tile indexes to process into separate lists for each worker
    # (by indexes of those combinations)
    tiles = pl_conf.region_tiles
    idx_batches = np.array_split(np.arange(len(tiles)), pl_conf.n_workers)

    # Assign gpus to tasks in round-robin fashion
    def get_gpu(i):
        if pl_conf.gpus is None:
            return None
        return pl_conf.gpus[i % len(pl_conf.gpus)]

    # Generate a single task configuration for each worker
    tasks = [
        pl_conf.get_task_config(region_indexes=tiles[idx_batch, 0],
                                tile_indexes=tiles[idx_batch, 1],
                                gpu=get_gpu(i))
        for i, idx_batch in enumerate(idx_batches)
    ]

    logger.info('Starting %s pipeline for %s tasks (%s workers)', task_type,
                len(tasks), pl_conf.n_workers)
    logger.debug('Task definitions:\n\t%s',
                 '\n\t'.join([str(t) for t in tasks]))
    try:
        # Passing logging initialization operation, if given, to workers now
        # running in separate processes
        if logging_init_fn:
            client.run(logging_init_fn)

        # Disable the "auto_restart" feature of dask workers which is of no use in this context
        for worker in cluster.workers:
            worker.auto_restart = False

        # Pass tasks to each worker to execute in parallel
        res = client.map(task_fn, tasks)
        res = [r.result() for r in res]
        if len(res) != len(tasks):
            raise ValueError(
                'Parallel execution returned {} results but {} were expected'.
                format(len(res), len(tasks)))
    finally:
        # Note that this often produces a non-critical error due to: https://github.com/dask/distributed/issues/1969
        # but that closing these resources is necessary to avoid GPU oom in post-processing
        client.close()
        cluster.close()

    # Save measurement data to disk
    measure_data = concat(res)
    if measure_data:
        path = exec.record_processor_data(measure_data, pl_conf.output_dir)
        logging.info('%s complete; Measurement data saved to "%s"', task_type,
                     path)
    else:
        logging.info('%s complete', task_type)
Пример #31
0
def client():
    client = Client(LocalCluster(n_workers=2))
    yield client
    client.close()
def eval_denoisers(
    run_ids,
    job_name='eval_denoisers',
    contrast='CORPD_FBK',
    n_epochs=200,
    model_name=None,
    model_size=None,
    n_samples_train=None,
    loss='mae',
):
    model_specs = list(get_model_specs(force_res=True))
    if model_name is not None:
        model_specs = [ms for ms in model_specs if ms[0] == model_name]
    if model_size is not None:
        model_specs = [ms for ms in model_specs if ms[1] == model_size]
    n_models = len(model_specs)
    eval_cluster = SLURMCluster(
        cores=1,
        job_cpu=40,
        memory='80GB',
        job_name=job_name,
        walltime='2:00:00',
        interface='ib0',
        job_extra=[
            f'--gres=gpu:1',
            '--qos=qos_gpu-t3',
            '--distribution=block:block',
            '--hint=nomultithread',
            '--output=%x_%j.out',
        ],
        env_extra=[
            'cd $WORK/fastmri-reproducible-benchmark',
            '. ./submission_scripts_jean_zay/env_config.sh',
        ],
    )
    eval_cluster.adapt(minimum_jobs=0, maximum_jobs=n_models)
    client = Client(eval_cluster)
    futures = [
        client.submit(
            # function to execute
            evaluate_xpdnet_denoising,
            model=(model_fun, kwargs, n_inputs),
            run_id=run_id,
            n_samples=50,
            contrast=contrast,
            n_epochs=n_epochs,
        ) for run_id, (_, _, model_fun, kwargs, n_inputs, _,
                       _) in zip(run_ids, model_specs)
    ]

    df_results = pd.DataFrame(
        columns='model_name model_size psnr ssim'.split())

    for (name, model_size, _, _, _, _, _), future in zip(model_specs, futures):
        _, eval_res = client.gather(future)
        df_results = df_results.append(dict(
            model_name=name,
            model_size=model_size,
            psnr=eval_res[0],
            ssim=eval_res[1],
        ),
                                       ignore_index=True)

    print(df_results)
    outputs_file = f'denoising_results_{n_samples_train}_{loss}.csv'
    if model_name is not None:
        outputs_file = f'denoising_results_{n_samples_train}_{loss}_{model_name}.csv'
    df_results.to_csv(outputs_file)
    print('Shutting down dask workers')
    client.close()
    eval_cluster.close()
    return run_ids
Пример #33
0
                      hdf_file=savefiles['linemin'],
                      client=client,
                      verbose=True)

    # First excited state
    wfs = [sys['wf'], deepcopy(sys['wf'])]
    optimize_orthogonal(wfs,
                        coords,
                        sys['pgrad'],
                        hdf_file=savefiles['excited1'],
                        forcing=[5.0],
                        Starget=[0.0],
                        client=client)

    # Second excited state
    wfs.append(deepcopy(sys['wf']))
    optimize_orthogonal(wfs,
                        coords,
                        sys['pgrad'],
                        hdf_file=savefiles['excited2'],
                        forcing=[5.0, 5.0],
                        Starget=[0.0, 0.0],
                        client=client)

    for nm in ['linemin', 'excited1', 'excited2']:
        print("evaluating", nm)
        find_basis_evaluate(savefiles['mf'], savefiles[nm],
                            savefiles[nm + '_vmc'], savefiles[nm + '_final'])

    client.close()
Пример #34
0
def test_status():
    with scheduler_and_workers() as (s, (a, b)):
        c = Client(s.address_to_clients)

        assert c.scheduler_status() == 'OK'
        c.close()
Пример #35
0
def balance_trainingdata(label_file,
                         reference_file,
                         genome_file,
                         output_file,
                         precision,
                         label_num,
                         bgzip,
                         log_file,
                         verbose,
                         seed,
                         cores=1,
                         memory_per_core='2GB'):
    """
    Function that calculates the GC content for positive and negative labeled genomic regions and
    balances their number based on GC content per chromosome.

    Arguments:
        label_file {str}        -- [Path to a .bed file containing genomic regions
                                    labeled as positive(1) or negative(0)]
        reference_file {str}    -- [Path to a reference genome in FASTA format]
        genome_file {str}       -- [Path to the genome file of the reference]
        output_file {str}       -- [Name of the output file. File will be in .bed format]
        precision {int}         -- [Precision of decimals when computing the attributes like GC content]
        label_num {int}         -- [Number of provided label columns]
        bgzip {boolean}         -- [output is compressed or not]
        log_file {str}          -- [Log file to write out loggin. If not None.]
        verbose {flag}          -- [Enables verbose mode.]
        seed {int}              -- [Sets the seed for sampling.]
        cores {int}             -- [Number of cores, default is 1. ]
        memory_per_core {str}   -- [Amount of memory per core.
                                    Accepted format [number]GB. Default is 2GB]
    """

    loglevel = logging.INFO
    logformat = '%(message)s'
    if verbose:
        loglevel = logging.DEBUG
        logformat = "%(asctime)s: %(levelname)s - %(message)s"
    if log_file is not None:
        logging.basicConfig(filename=log_file,
                            level=loglevel,
                            format=logformat)
    elif output_file is not None:
        logging.basicConfig(stream=sys.stdout,
                            level=loglevel,
                            format=logformat)
    else:
        logging.basicConfig(stream=sys.stderr,
                            level=loglevel,
                            format=logformat)

    logging.info(
        "---------------------\nstarting workers...\n---------------------")

    client = Client(n_workers=cores,
                    threads_per_worker=1,
                    memory_limit=memory_per_core,
                    dashboard_address=None)
    client  # pylint: disable=pointless-statement

    logging.info(
        "---------------------\ncalculating GC content...\n---------------------"
    )

    cl_gc = get_gc(label_file, reference_file, label_num, precision)

    logging.info(
        "---------------------\nextracting positive samples...\n---------------------"
    )

    positive_sample = get_positive(cl_gc)

    logging.info(
        "---------------------\nbalancing negative sample set...\n---------------------"
    )

    dts = dict(cl_gc.dtypes)
    negative_sample = (cl_gc.groupby(["chrom"], group_keys=False).apply(
        get_negative, seed, meta=dts)).compute()

    logging.info(
        "---------------------\nloading contigs...\n---------------------")

    contigs = load_contigs(genome_file)

    #    print(contigs)

    logging.info(
        "---------------------\ncleaning samples\n---------------------")

    positive_sample_cleaned = clean_sample(positive_sample, contigs)
    negative_sample_cleaned = clean_sample(negative_sample, contigs)

    logging.info(
        "---------------------\nsaving results\n---------------------")

    sample_df = combine_samples(positive_sample_cleaned,
                                negative_sample_cleaned)

    #print(sample_df.head())

    if output_file:
        write_to_file(sample_df, output_file, bgzip)
    else:
        write_to_stdout(sample_df, precision)

    logging.info(
        "---------------------\nshutting down workers...\n---------------------"
    )

    client.close()
Пример #36
0
class DaskParallelRunner(BaseRunner):
    """Interface to submit and collect a job in a distributed fashion.

    DaskParallelRunner is intended to comply with the bridge design pattern.

    Nevertheless, to reduce the amount of code within single-vs-parallel
    implementations, DaskParallelRunner wraps a BaseRunner object which
    is then executed in parallel on n_workers.

    This class then is constructed by passing a BaseRunner that implements
    a run() method, and is capable of doing so in a serial fashion. Then,
    this wrapper class called DaskParallelRunner uses dask to initialize
    N number of BaseRunner that actively wait of a RunInfo to produce a
    RunValue object.

    To be more precise, the work model is then:
    1.  The smbo.intensifier dictates "what" to run (a configuration/instance/seed)
        via a RunInfo object.
    2.  a tae_runner takes this RunInfo object and launches the task via
        tae_runner.submit_run(). In the case of DaskParallelRunner, n_workers
        receive a pickle-object of DaskParallelRunner.single_worker, each with a
        run() method coming from DaskParallelRunner.single_worker.run()
    3.  RunInfo objects are run in a distributed fashion, an their results are
        available locally to each worker. Such result is collected by
        DaskParallelRunner.get_finished_runs() and then passed to the SMBO.
    4.  Exceptions are also locally available to each worker and need to be
        collected.

    Dask works with Future object which are managed via the DaskParallelRunner.client.


    Parameters
    ---------
    single_worker: BaseRunner
        A runner to run in a distributed fashion
    n_workers: int
        Number of workers to use for distributed run. Will be ignored if ``dask_client`` is not ``None``.
    patience: int
        How much to wait for workers to be available if one fails
    output_directory: str, optional
        If given, this will be used for the dask worker directory and for storing server information.
        If a dask client is passed, it will only be used for storing server information as the
        worker directory must be set by the program/user starting the workers.
    dask_client: dask.distributed.Client
        User-created dask client, can be used to start a dask cluster and then attach SMAC to it.


    Attributes
    ----------
    results
    ta
    stats
    run_obj
    par_factor
    cost_for_crash
    abort_i_first_run_crash
    n_workers
    futures
    client

    """
    def __init__(
        self,
        single_worker: BaseRunner,
        n_workers: int,
        patience: int = 5,
        output_directory: typing.Optional[str] = None,
        dask_client: typing.Optional[dask.distributed.Client] = None,
    ):
        super(DaskParallelRunner, self).__init__(
            ta=single_worker.ta,
            stats=single_worker.stats,
            multi_objectives=single_worker.multi_objectives,
            run_obj=single_worker.run_obj,
            par_factor=single_worker.par_factor,
            cost_for_crash=single_worker.cost_for_crash,
            abort_on_first_run_crash=single_worker.abort_on_first_run_crash,
        )

        # The single worker, which is replicated on a need
        # basis to every compute node
        self.single_worker = single_worker
        self.n_workers = n_workers

        # How much time to wait for workers to be available
        self.patience = patience

        self.output_directory = output_directory

        # Because a run() method can have pynisher, we need to prevent the multiprocessing
        # workers to be instantiated as demonic - this cannot be passed via worker_kwargs
        dask.config.set({'distributed.worker.daemon': False})
        if dask_client is None:
            self.close_client_at_del = True
            self.client = Client(n_workers=self.n_workers,
                                 processes=True,
                                 threads_per_worker=1,
                                 local_directory=output_directory)
            if self.output_directory:
                self.scheduler_file = os.path.join(self.output_directory,
                                                   '.dask_scheduler_file')
                self.client.write_scheduler_file(
                    scheduler_file=self.scheduler_file)
        else:
            self.close_client_at_del = False
            self.client = dask_client
        self.futures = []  # type: typing.List[Future]

        self.scheduler_info = self.client._get_scheduler_info()

    def submit_run(self, run_info: RunInfo) -> None:
        """This function submits a configuration
        embedded in a run_info object, and uses one of the workers
        to produce a result locally to each worker.

        The execution of a configuration follows this procedure:
        1.  SMBO/intensifier generates a run_info
        2.  SMBO calls submit_run so that a worker launches the run_info
        3.  submit_run internally calls self.run(). it does so via a call to self.run_wrapper()
        which contains common code that any run() method will otherwise have to implement, like
        capping check.

        Child classes must implement a run() method.
        All results will be only available locally to each worker, so the
        main node needs to collect them.

        Parameters
        ----------
        run_info: RunInfo
            An object containing the configuration and the necessary data to run it

        """
        # Check for resources or block till one is available
        if not self._workers_available():
            wait(self.futures, return_when='FIRST_COMPLETED').done
            self._extract_completed_runs_from_futures()

        # In code check to make sure that there are resources
        if not self._workers_available():
            warnings.warn(
                "No workers are available. This could mean workers crashed"
                "Waiting for new workers...")
            time.sleep(self.patience)
            if not self._workers_available():
                raise ValueError(
                    "Tried to execute a job, but no worker was "
                    "available. This likely means that a worker crashed "
                    "or no workers were properly configured.")

        # At this point we can submit the job
        # For `pure=False`, see
        #   http://distributed.dask.org/en/stable/client.html#pure-functions-by-default
        self.futures.append(
            self.client.submit(self.single_worker.run_wrapper,
                               run_info,
                               pure=False))

    def get_finished_runs(
            self) -> typing.List[typing.Tuple[RunInfo, RunValue]]:
        """This method returns any finished configuration, and returns a list with
        the results of exercising the configurations. This class keeps populating results
        to self.results until a call to get_finished runs is done. In this case, the
        self.results list is emptied and all RunValues produced by running run() are
        returned.

        Returns
        -------
            List[RunInfo, RunValue]: A list of RunValues (and respective RunInfo), that is,
                the results of executing a run_info
            a submitted configuration
        """

        # Proactively see if more configs have finished
        self._extract_completed_runs_from_futures()

        results_list = []
        while self.results:
            results_list.append(self.results.pop())
        return results_list

    def _extract_completed_runs_from_futures(self) -> None:
        """
        A run is over, when a future has done() equal true.
        This function collects the completed futures and move
        them from self.futures to self.results.

        We make sure futures never exceed the capacity of
        the scheduler
        """

        # In code check to make sure we don;t exceed resource allocation
        if len(self.futures) > sum(self.client.nthreads().values()):
            warnings.warn(
                "More running jobs than resources available "
                "Should not have more futures/runs in remote workers "
                "than the number of workers. This could mean a worker "
                "crashed and was not able to be recovered by dask. ")

        # A future is removed to the list of futures as an indication
        # that a worker is available to take in an extra job
        done_futures = [f for f in self.futures if f.done()]
        for future in done_futures:
            self.results.append(future.result())
            self.futures.remove(future)

    def wait(self) -> None:
        """SMBO/intensifier might need to wait for runs to finish before making a decision.
        This class waits until 1 run completes
        """
        if self.futures:
            wait(self.futures, return_when='FIRST_COMPLETED').done

    def pending_runs(self) -> bool:
        """
        Whether or not there are configs still running. Generally if the runner is serial,
        launching a run instantly returns it's result. On parallel runners, there might
        be pending configurations to complete.
        """
        # If there are futures available, it translates
        # to runs still not finished/processed
        return len(self.futures) > 0

    def run(
        self,
        config: Configuration,
        instance: str,
        cutoff: typing.Optional[float] = None,
        seed: int = 12345,
        budget: typing.Optional[float] = None,
        instance_specific: str = "0",
    ) -> typing.Tuple[StatusType, float, float, typing.Dict]:
        """
        This method only complies with the abstract parent class. In the parallel case,
        we call the single worker run() method

        Parameters
        ----------
            config : Configuration
                dictionary param -> value
            instance : string
                problem instance
            cutoff : float, optional
                Wallclock time limit of the target algorithm. If no value is
                provided no limit will be enforced.
            seed : int
                random seed
            budget : float, optional
                A positive, real-valued number representing an arbitrary limit to the target
                algorithm. Handled by the target algorithm internally
            instance_specific: str
                instance specific information (e.g., domain file or solution)

        Returns
        -------
            status: enum of StatusType (int)
                {SUCCESS, TIMEOUT, CRASHED, ABORT}
            cost: float
                cost/regret/quality (float) (None, if not returned by TA)
            runtime: float
                runtime (None if not returned by TA)
            additional_info: dict
                all further additional run information
        """
        return self.single_worker.run(
            config=config,
            instance=instance,
            cutoff=cutoff,
            seed=seed,
            budget=budget,
            instance_specific=instance_specific,
        )

    def num_workers(self) -> int:
        """Total number of workers available. This number is dynamic
        as more resources can be allocated"""
        return sum(self.client.nthreads().values())

    def _workers_available(self) -> bool:
        """"Query if there are workers available, which means
        that there are resources to launch a dask job"""
        total_compute_power = sum(self.client.nthreads().values())
        if len(self.futures) < total_compute_power:
            return True
        return False

    def __del__(self) -> None:
        """Make sure that when this object gets deleted, the client is terminated. This is only done if
        the client was created by the dask runner."""
        if self.close_client_at_del:
            self.client.close()
Пример #37
0
            args.bin_width, args.filter_bandwidth, args.theta, args.shift
    ):
        start_time = datetime.now()
        ds = xr.open_mfdataset(
            ['/scratch/pkittiwi/fg1p/binned_noise_map/bin{:.2f}MHz/'
             'fbw{:.2f}MHz/theta{:.1f}/shift{:d}/binned_noise_map_bin{:.2f}MHz_'
             'fbw{:.2f}MHz_theta{:.1f}_shift{:d}_{:03d}.nc'
             .format(bw, fbw, t, s, bw, fbw, t, s, i) for i in range(500)],
            concat_dim=noise_dim, chunks=chunks
        )
        ds_masked = ds.where(mask == 1)
        noise_var = ds_masked.var(dim=['x', 'y']).compute()
        da = noise_var.to_array().squeeze()
        del da['variable']
        da.attrs['bin_width'] = bw
        da.attrs['filter_bandwidth'] = fbw
        da.attrs['theta'] = t
        da.attrs['shift'] = s
        da.name = 'binned_noise_variance'
        output_file = '/scratch/pkittiwi/fg1p/binned_noise_variance/' \
                      'binned_noise_variance_bin{:.2f}MHz_fbw{:.2f}MHz_' \
                      'theta{:.1f}_shift{:d}.nc'.format(bw, fbw, t, s)
        da.to_netcdf(output_file)
        print(
            'Finish {:s}. Spent {:.5f} sec on this file'
            .format(output_file, (datetime.now() - start_time).total_seconds())
        )

    client.close()
    cluster.close()
Пример #38
0
def run_simulation(cfg, client_ip=None):
    """
    main function
    :param cfg: an instance of TransmissionConfig
    """

    tic = time.time()

    logger = logging.getLogger(__name__)

    if cfg.options['run_parallel']:

        logger.info('parallel MC run on.......')
        client = Client(client_ip)

        lines = []
        for event in cfg.events:

            scenario = Scenario(event=event, cfg=cfg)

            for _, line in scenario.lines.items():

                line = client.submit(line.compute_damage_per_line, cfg=cfg)
                lines.append(line)

        client.gather(lines)
        client.close()

    else:

        logger.info('serial MC run on.......')

        # create transmission network with wind event

        lines = []

        for event in cfg.events:

            scenario = Scenario(event=event, cfg=cfg)

            damage_prob_max = pd.DataFrame(None, columns=cfg.damage_states)

            for _, line in scenario.lines.items():

                _ = line.compute_damage_per_line(cfg=cfg)

                df = pd.DataFrame(None, columns=cfg.damage_states)

                for ds in cfg.damage_states:
                    try:
                        tmp = line.damage_prob[ds].max(axis=0)
                    except KeyError:
                        pass
                    else:
                        df[ds] = tmp

                damage_prob_max = damage_prob_max.append(df)

            if not damage_prob_max.empty:
                damage_prob_max.index.name = 'name'
                damage_prob_max.to_csv(scenario.file_output)
                logger.info(f'{scenario.file_output} is saved')

            if cfg.line_interaction:
                _ = scenario.compute_damage_probability_line_interaction()

    logger.info(f'MC simulation took {time.time() - tic} seconds')

    return lines