Пример #1
0
class MyDaskClient():
    def __init__(self, address=None):
        self._client = Client(address)

    def _who_has(self, key):
        who_has_dict = self._client.who_has()
        if key in who_has_dict:
            return {"key": key, "worker": who_has_dict[key]}

    def get_status(self, key):
        # first we check if a worker has it
        processing_dict = self._client.processing()
        for worker in processing_dict.keys():
            if key in processing_dict[worker]:
                return {"status": "running", "worker": worker}
        # then we check if the task is in the stream
        for task in reversed(self._client.get_task_stream()):
            if task["key"] == key:
                return {"status": "done", "dask_status": task["status"]}
def main():
    #print('XGBOOST_BUILD_DOC is ' + os.environ['XGBOOST_BUILD_DOC'])
    parser = argparse.ArgumentParser("rapidssample")
    parser.add_argument("--data_dir", type=str, help="location of data")
    parser.add_argument("--num_gpu", type=int, help="Number of GPUs to use", default=1)
    parser.add_argument("--part_count", type=int, help="Number of data files to train against", default=2)
    parser.add_argument("--end_year", type=int, help="Year to end the data load", default=2000)
    parser.add_argument("--cpu_predictor", type=str, help="Flag to use CPU for prediction", default='False')
    parser.add_argument('-f', type=str, default='') # added for notebook execution scenarios
    args = parser.parse_args()
    data_dir = args.data_dir
    num_gpu = args.num_gpu
    part_count = args.part_count
    end_year = args.end_year
    cpu_predictor = args.cpu_predictor.lower() in ('yes', 'true', 't', 'y', '1')

    if cpu_predictor:
        print('Training with CPUs require num gpu = 1')
        num_gpu = 1

    print('data_dir = {0}'.format(data_dir))
    print('num_gpu = {0}'.format(num_gpu))
    print('part_count = {0}'.format(part_count))
    #part_count = part_count + 1 # adding one because the usage below is not inclusive
    print('end_year = {0}'.format(end_year))
    print('cpu_predictor = {0}'.format(cpu_predictor))
    
    import subprocess

    cmd = "hostname --all-ip-addresses"
    process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)
    output, error = process.communicate()
    IPADDR = str(output.decode()).split()[0]
    
    cluster = LocalCUDACluster(ip=IPADDR,n_workers=num_gpu)
    client = Client(cluster)
    client
    print(client.ncores())

# to download data for this notebook, visit https://rapidsai.github.io/demos/datasets/mortgage-data and update the following paths accordingly
    acq_data_path = "{0}/acq".format(data_dir) #"/rapids/data/mortgage/acq"
    perf_data_path = "{0}/perf".format(data_dir) #"/rapids/data/mortgage/perf"
    col_names_path = "{0}/names.csv".format(data_dir) # "/rapids/data/mortgage/names.csv"
    start_year = 2000
#end_year = 2000 # end_year is inclusive -- converted to parameter
#part_count = 2 # the number of data files to train against -- converted to parameter

    client.run(initialize_rmm_pool)
    client
    print(client.ncores())
# NOTE: The ETL calculates additional features which are then dropped before creating the XGBoost DMatrix.
# This can be optimized to avoid calculating the dropped features.
    print("Reading ...")
    t1 = datetime.datetime.now()
    gpu_dfs = []
    gpu_time = 0
    quarter = 1
    year = start_year
    count = 0
    while year <= end_year:
        for file in glob(os.path.join(perf_data_path + "/Performance_" + str(year) + "Q" + str(quarter) + "*")):
            if count < part_count:
                gpu_dfs.append(process_quarter_gpu(client, col_names_path, acq_data_path, year=year, quarter=quarter, perf_file=file))
                count += 1
                print('file: {0}'.format(file))
                print('count: {0}'.format(count))
        quarter += 1
        if quarter == 5:
            year += 1
            quarter = 1
            
    wait(gpu_dfs)
    t2 = datetime.datetime.now()
    print("Reading time ...")
    print(t2-t1)
    print('len(gpu_dfs) is {0}'.format(len(gpu_dfs)))
    
    client.run(cudf._gdf.rmm_finalize)
    client.run(initialize_rmm_no_pool)
    client
    print(client.ncores())
    dxgb_gpu_params = {
        'nround':            100,
        'max_depth':         8,
        'max_leaves':        2**8,
        'alpha':             0.9,
        'eta':               0.1,
        'gamma':             0.1,
        'learning_rate':     0.1,
        'subsample':         1,
        'reg_lambda':        1,
        'scale_pos_weight':  2,
        'min_child_weight':  30,
        'tree_method':       'gpu_hist',
        'n_gpus':            1, 
        'distributed_dask':  True,
        'loss':              'ls',
        'objective':         'gpu:reg:linear',
        'max_features':      'auto',
        'criterion':         'friedman_mse',
        'grow_policy':       'lossguide',
        'verbose':           True
    }
      
    if cpu_predictor:
        print('Training using CPUs')
        dxgb_gpu_params['predictor'] = 'cpu_predictor'
        dxgb_gpu_params['tree_method'] = 'hist'
        dxgb_gpu_params['objective'] = 'reg:linear'
        
    else:
        print('Training using GPUs')
    
    print('Training parameters are {0}'.format(dxgb_gpu_params))
    
    gpu_dfs = [delayed(DataFrame.from_arrow)(gpu_df) for gpu_df in gpu_dfs[:part_count]]
    gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
    wait(gpu_dfs)
    
    tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0]) for gpu_df in gpu_dfs]
    new_map = {}
    for key, value in tmp_map:
        if value not in new_map:
            new_map[value] = [key]
        else:
            new_map[value].append(key)
    
    del(tmp_map)
    gpu_dfs = []
    for list_delayed in new_map.values():
        gpu_dfs.append(delayed(cudf.concat)(list_delayed))
    
    del(new_map)
    gpu_dfs = [(gpu_df[['delinquency_12']], gpu_df[delayed(list)(gpu_df.columns.difference(['delinquency_12']))]) for gpu_df in gpu_dfs]
    gpu_dfs = [(gpu_df[0].persist(), gpu_df[1].persist()) for gpu_df in gpu_dfs]
    
    gpu_dfs = [dask.delayed(xgb.DMatrix)(gpu_df[1], gpu_df[0]) for gpu_df in gpu_dfs]
    gpu_dfs = [gpu_df.persist() for gpu_df in gpu_dfs]
    gc.collect()
    wait(gpu_dfs)
    
    labels = None
    t1 = datetime.datetime.now()
    bst = dxgb_gpu.train(client, dxgb_gpu_params, gpu_dfs, labels, num_boost_round=dxgb_gpu_params['nround'])
    t2 = datetime.datetime.now()
    print("Training time ...")
    print(t2-t1)
    print('str(bst) is {0}'.format(str(bst)))
    print('Exiting script')
Пример #3
0
    }

    # #### Load the data from host memory, and convert to CSR

    # In[ ]:

    # %%time

    gpu_dfs = [
        delayed(DataFrame.from_arrow)(gpu_df)
        for gpu_df in gpu_dfs[:part_count]
    ]
    gpu_dfs = [gpu_df for gpu_df in gpu_dfs]
    wait(gpu_dfs)

    tmp_map = [(gpu_df, list(client.who_has(gpu_df).values())[0])
               for gpu_df in gpu_dfs]
    new_map = {}
    for key, value in tmp_map:
        if value not in new_map:
            new_map[value] = [key]
        else:
            new_map[value].append(key)

    del (tmp_map)
    gpu_dfs = []
    for list_delayed in new_map.values():
        gpu_dfs.append(delayed(cudf.concat)(list_delayed))

    del (new_map)
    gpu_dfs = [
Пример #4
0
c.gather(c.map(lambda x: get_worker().array_cache.clear(),workers,workers=workers))

# start
c.get_task_stream()
# print(get_mll_hist(chunks[0]))
t0 = time.time()
futures = c.map(get_mll_hist,chunks)
results = c.gather(futures)
t1 = time.time()
print(len(results),"results")
print(t1-t0)
task_stream = c.get_task_stream(start=t0,stop=t1)
print("task_stream length",len(task_stream))
pd.DataFrame(task_stream).drop("type",axis=1).to_json("data/dask_cold_{}.json".format(trial))

d = c.who_has(futures)
# chunk_workers = list(zip(chunks,[d[f.key] for f in futures]))
workers = [d[f.key][0] for f in futures]
print(workers)

c.get_task_stream()
t0 = time.time()
# pure=False to avoid caching of the *results*
futures = [c.submit(get_mll_hist,chunk,pure=False,workers=worker,allow_other_workers=True) for chunk,worker in zip(chunks,workers)]
# futures = c.map(get_mll_hist,chunks,workers=workers,pure=False)
results = c.gather(futures)
t1 = time.time()
print(len(results),"results")
print(t1-t0)
task_stream = c.get_task_stream(start=t0,stop=t1)
print("task_stream length",len(task_stream))