def handle(self, *args, **options): ai = AdamImport() ifile = 'F:\\adamexports\\adamcache\Incar\Data\INVEN.DBF' ofile = 'F:\\adamexports\csvfiles\INVEN.csv' out_type = 'csv' ai.DBFConverter(ifile, ofile, out_type) inv = pd.read_csv(ofile) ext = inv.ONHAND * inv.COST ext = sum(ext) try: r = PartsInv(invvalue=ext) r.save() print "updated inventory value to %s" % ext except: print "There was an error updating invvalue" ifile = 'F:\\adamexports\\adamcache\Sicar\Data\\rofile.dbf' ofile = 'F:\\adamexports\csvfiles\\rofile.csv' out_type = 'csv' ai.DBFConverter(ifile, ofile, out_type) rof = pd.read_csv(ofile) cutoff_date = datetime.date.today() + datetime.timedelta(-30) ttlcount = rof.RO_NUM.count() custsum = rof.CP_TOTAL.sum() intsum = rof.IN_TOTAL.sum() warsum = rof.WP_TOTAL.sum() extsum = rof.XP_TOTAL.sum() pcount = rof[rof['STATUS'].str.contains('P')] pcount = pcount['STATUS'].count() rof['DATE_IN'] = pd.to_datetime(rof['DATE_IN']) oldcount = rof[rof['DATE_IN'] < pd.to_datetime(cutoff_date)] oldcount = oldcount['RO_NUM'].count() try: r = ServiceRO( totalrocount=ttlcount, oldrocount=oldcount, printedrocount=pcount, ro_custpay=custsum, ro_intpay=intsum, ro_warpay=warsum, ro_extpay=extsum, ) r.save() print "updated service RO values" print ttlcount, pcount, oldcount, custsum, intsum, warsum, extsum except: print "There was an error updating Service Ro Values"
def do_conversion(in_file, out_file): ai = AdamImport() ifile = ''.join([ADAM_PATH, in_file]) ofile = ''.join([ADAM_EXPORT_PATH, out_file]) out_type = 'csv' ai.DBFConverter(ifile, ofile, out_type) print "ran conversion %s to %s" % (in_file, out_file)
def sv_Get_RO_Count(type): """ type:valid options are totalcount, oldcount """ ai = AdamImport() ifile = 'F:\\adamexports\\adamcache\Sicar\Data\\rofile.dbf' ofile = 'F:\\adamexports\csvfiles\\rofile.csv' out_type = 'csv' if need_refresh(ofile): ai.DBFConverter(ifile, ofile, out_type) rof = pd.read_csv(ofile, engine='python') cutoff_date = datetime.date.today() + datetime.timedelta(-30) ttlcount = rof.RO_NUM.count() rof['DATE_IN'] = pd.to_datetime(rof['DATE_IN']) oldcount = rof[rof['DATE_IN'] < pd.to_datetime(cutoff_date)] oldcount = oldcount['RO_NUM'].count() if type == 'totalcount': return ttlcount elif type == 'oldcount': return oldcount
def do_conversion(ifile, ofile): ai = AdamImport() ifile = ''.join([ADAM_PATH, ifile]) ofile = ''.join([ADAM_EXPORT_PATH, ofile]) out_type = 'csv' #if need_refresh(ofile): ai.DBFConverter(ifile, ofile, out_type) print "conversion completed"
def pa_Get_Inventory_Value(): ai = AdamImport() ifile = 'F:\\adamexports\\adamcache\Incar\Data\INVEN.DBF' ofile = 'F:\\adamexports\csvfiles\INVEN.csv' out_type = 'csv' if need_refresh(ofile): ai.DBFConverter(ifile, ofile, out_type) inv = pd.read_csv(ofile, engine='python') ext = inv.ONHAND * inv.COST ext = sum(ext) return ext
def export(request, path_id): # view to convert a DBF file on the fly and export it to a CSV ai = AdamImport() # get the id from the path and pull the correspoding DBF p = ADAMFiles.objects.get(id=path_id) p = str(p) ai.DBFConverter(p, 'output.csv', 'csv') f = open('output.csv') ofile = os.path.basename(p) ofile = ofile.replace('.dbf', '') ofile = ofile.replace('.DBF', '') response = HttpResponse(f, content_type="text/csv") params = 'attachment; filename=%s.csv' % ofile response['Content-Disposition'] = params f.close() return response
def detail(request, path_id): # view for the adam/<id> page returns an html rendered dataframe # create the object to convert DBF to pandas # this view is mainly for previewing data ai = AdamImport() # get the id from the path and pull the correspoding DBF p = ADAMFiles.objects.get(id=path_id) p = str(p) # conver the DBF to a dataframe datafr = ai.DBFConverter(p, 'output.csv', 'pandas') # ******************* # modify the dataframe here before converting to HTML # be careful not to return too many rows or the http req will time out # ******************* s = datafr.head() # ******************* # ******************* s_trunk = s.to_html() return HttpResponse(s_trunk)
from dbftopandas import AdamImport ai = AdamImport() i = 'f:\\adamexports\\adamcache\Sicar\Data\\rofile.dbf' o = 'f:\\adamexports\csvfiles\\rofile.csv' t = 'csv' ai.DBFConverter(i, o, t) #t = 'pandas' #pd = ai.DBFConverter(i,o,t) #print pd.head() #headers = ai.GetColNames(i) #print headers #i = 'f:\\adamexports\\adamcache\Apcar\Data\\apinv.dbf' #headers = ai.GetColNames(i) #print headers #data_types = ai.GetColNamesAndTypes(i) #for d in data_types: # if data_types[d] == 'NoneType': # print d, data_types[d]
def pa_Get_Parts_Count(type, start_days, end_days, field, cost=1500): """ type takes either total, detail, detail_stock (this returns detail including stock parts) total retuns in int, sum of ONHAND detail return a dataframe obj with detailed records field can take DATEPURC or DATESOLD cost should be expressed as an integer in cents start_days should be a negative integer end_days should be a negative integer greater than start days """ #parts needed to be in stock for DPA stock_file = ''.join([ADAM_EXPORT_PATH, 'Extract.csv']) stock = pd.read_csv(stock_file) stock.columns = ['Ford', 'Alternate', 'QOH', 'Days1', 'Days2'] ford = stock[['Ford']].dropna() ford['Alternate'] = ford['Ford'] stock = stock[['Alternate']].dropna() stock = stock.append(ford['Alternate'], ignore_index=True) #pull the latest parts inventory from ADAM ai = AdamImport() ifile = ''.join([ADAM_PATH, '\Incar\Data\INVEN.DBF']) ofile = ''.join([ADAM_EXPORT_PATH, 'INVEN.csv']) out_type = 'csv' #refresh the data in necessary if need_refresh(ofile): ai.DBFConverter(ifile, ofile, out_type) #read the CSV in a dataframe and convert the dates inv = pd.read_csv(ofile, engine='python') startdate = datetime.date.today() + datetime.timedelta(start_days) enddate = datetime.date.today() + datetime.timedelta(end_days) #initialize the parameters from the query string fdDate = str(field) #change cost to an integer and multiply by 100 to make it in dollars intCost = int(cost) / 100 #filter out the data inv = inv[inv['ONHAND'] > 0] inv = inv[inv['COST'] > intCost] inv[fdDate] = pd.to_datetime(inv[fdDate]) inv = inv[(inv[fdDate] < pd.to_datetime(startdate)) & (inv[fdDate] > pd.to_datetime(enddate))] inv['ext'] = inv['ONHAND'] * inv['COST'] #if the type is total just give a total parts value if type == "total": inv_sum = inv['ONHAND'].sum() return inv_sum #if the type is detail prepare the data for detailed export elif type == "detail": #create a full part number field to filter on inv.SUFFIX = inv.SUFFIX.fillna('') inv['FULLPN'] = inv['PREFIX'] + inv['PARTNO'] + inv['SUFFIX'] #print inv['PREFIX'],inv['PARTNO'],inv['SUFFIX'],inv['FULLPN'] #create the filter to exclude stock parts invx = inv['FULLPN'].isin(stock['Alternate']) #print stock['Alternate'].loc[20:30] print invx #create a new inv dataframe with out the stock parts inv = inv[~invx] inv_detail = inv[[ 'PREFIX', 'PARTNO', 'SUFFIX', 'DESC', 'ONHAND', 'DATEPURC', 'DATESOLD', 'COST', 'ext', 'LOCATION' ]] inv_detail = inv_detail.sort(fdDate) return inv_detail elif type == "detail_stock": #in this case, return everything including stock parts inv_detail = inv[[ 'PREFIX', 'PARTNO', 'SUFFIX', 'DESC', 'ONHAND', 'DATEPURC', 'DATESOLD', 'COST', 'ext', 'LOCATION' ]] inv_detail = inv_detail.sort(fdDate) return inv_detail