Пример #1
0
    def a(t):
        return c / (1 - t)

    def log_a(t):
        return T.log(c / (1 - t))

    def A(t):
        return -c * T.log(1 - t)

    def create_harmonic(M):
        return np.cumsum(1.0 / np.arange(1, M + 1)).astype(np.float32)

    T.set_default_device('/cpu:0')

    c = T.scalar(name='c')
    segments = T.matrix(dtype='int32', name='segments')

    a_idx = segments[:, 0]
    b_idx = segments[:, 1]
    leaf_segment = segments[:, 2]
    m = segments[:, 3]
    log_fac = segments[:, 4]

    x = T.matrix(name='x')
    e = T.matrix(name='e')
    q_network = Vector(X.shape[1], placeholder=x, is_input=False) >> Repeat(Tanh(200), 2)
    q_mu_network = q_network >> Linear(D)
    q_mu = q_mu_network.get_outputs()[0].get_placeholder()
    q_sigma_network = q_network >> Linear(D)
    q_sigma = tf.sqrt(tf.exp(q_sigma_network.get_outputs()[0].get_placeholder()))
Пример #2
0
    def initialize(self):
        self.graph = T.core.Graph()
        with self.graph.as_default():
            prior_params = self.prior_params.copy()
            prior_type = prior_params.pop('prior_type')
            self.prior = PRIOR_MAP[prior_type](self.ds, self.da, self.horizon, **prior_params)

            cost_params = self.cost_params.copy()
            cost_type = cost_params.pop('cost_type')
            self.cost = COST_MAP[cost_type](self.ds, self.da, **cost_params)

            self.O = T.placeholder(T.floatx(), [None, None, self.do])
            self.U = T.placeholder(T.floatx(), [None, None, self.du])
            self.C = T.placeholder(T.floatx(), [None, None])
            self.S = T.placeholder(T.floatx(), [None, None, self.ds])
            self.A = T.placeholder(T.floatx(), [None, None, self.da])

            self.t = T.placeholder(T.int32, [])
            self.state, self.action = T.placeholder(T.floatx(), [None, self.ds]), T.placeholder(T.floatx(), [None, self.da])
            if self.prior.has_dynamics():
                self.next_state = self.prior.next_state(self.state, self.action, self.t)
                self.prior_dynamics = self.prior.get_dynamics()

            self.num_data = T.scalar()
            self.beta = T.placeholder(T.floatx(), [])
            self.learning_rate = T.placeholder(T.floatx(), [])
            self.model_learning_rate = T.placeholder(T.floatx(), [])

            self.S_potentials = util.map_network(self.state_encoder)(self.O)
            self.A_potentials = util.map_network(self.action_encoder)(self.U)

            if self.prior.is_dynamics_prior():
                self.data_strength = T.placeholder(T.floatx(), [])
                self.max_iter = T.placeholder(T.int32, [])
                posterior_dynamics, (encodings, actions) = \
                        self.prior.posterior_dynamics(self.S_potentials, self.A_potentials,
                                                      data_strength=self.data_strength,
                                                      max_iter=self.max_iter)
                self.posterior_dynamics_ = posterior_dynamics, (encodings.expected_value(), actions.expected_value())

            if self.prior.is_filtering_prior():
                self.prior_dynamics_stats = self.prior.sufficient_statistics()
                self.dynamics_stats = (
                    T.placeholder(T.floatx(), [None, self.ds, self.ds]),
                    T.placeholder(T.floatx(), [None, self.ds, self.ds + self.da]),
                    T.placeholder(T.floatx(), [None, self.ds + self.da, self.ds + self.da]),
                    T.placeholder(T.floatx(), [None]),
                )
                S_natparam = self.S_potentials.get_parameters('natural')
                num_steps = T.shape(S_natparam)[1]

                self.padded_S = stats.Gaussian(T.core.pad(
                    self.S_potentials.get_parameters('natural'),
                    [[0, 0], [0, self.horizon - num_steps], [0, 0], [0, 0]]
                ), 'natural')
                self.padded_A = stats.GaussianScaleDiag([
                    T.core.pad(self.A_potentials.get_parameters('regular')[0],
                            [[0, 0], [0, self.horizon - num_steps], [0, 0]]),
                    T.core.pad(self.A_potentials.get_parameters('regular')[1],
                            [[0, 0], [0, self.horizon - num_steps], [0, 0]])
                ], 'regular')
                self.q_S_padded, self.q_A_padded = self.prior.encode(
                    self.padded_S, self.padded_A,
                    dynamics_stats=self.dynamics_stats
                )
                self.q_S_filter = self.q_S_padded.filter(max_steps=num_steps)
                self.q_A_filter = self.q_A_padded.__class__(
                    self.q_A_padded.get_parameters('natural')[:, :num_steps]
                , 'natural')
                self.e_q_S_filter = self.q_S_filter.expected_value()
                self.e_q_A_filter = self.q_A_filter.expected_value()

            (self.q_S, self.q_A), self.prior_kl, self.kl_grads, self.info = self.prior.posterior_kl_grads(
                self.S_potentials, self.A_potentials, self.num_data
            )

            self.q_S_sample = self.q_S.sample()[0]
            self.q_A_sample = self.q_A.sample()[0]

            self.q_O = util.map_network(self.state_decoder)(self.q_S_sample)
            self.q_U = util.map_network(self.action_decoder)(self.q_A_sample)
            self.q_O_sample = self.q_O.sample()[0]
            self.q_U_sample = self.q_U.sample()[0]

            self.q_O_ = util.map_network(self.state_decoder)(self.S)
            self.q_U_ = util.map_network(self.action_decoder)(self.A)
            self.q_O__sample = self.q_O_.sample()[0]
            self.q_U__sample = self.q_U_.sample()[0]

            self.cost_likelihood = self.cost.log_likelihood(self.q_S_sample, self.C)
            if self.cost.is_cost_function():
                self.evaluated_cost = self.cost.evaluate(self.S)
            self.log_likelihood = T.sum(self.q_O.log_likelihood(self.O), axis=1)

            self.elbo = T.mean(self.log_likelihood + self.cost_likelihood - self.prior_kl)
            train_elbo = T.mean(self.log_likelihood + self.beta * (self.cost_likelihood - self.prior_kl))
            T.core.summary.scalar("encoder-stdev", T.mean(self.S_potentials.get_parameters('regular')[0]))
            T.core.summary.scalar("log-likelihood", T.mean(self.log_likelihood))
            T.core.summary.scalar("cost-likelihood", T.mean(self.cost_likelihood))
            T.core.summary.scalar("prior-kl", T.mean(self.prior_kl))
            T.core.summary.scalar("beta", self.beta)
            T.core.summary.scalar("elbo", self.elbo)
            T.core.summary.scalar("beta-elbo", train_elbo)
            for k, v in self.info.items():
                T.core.summary.scalar(k, T.mean(v))
            self.summary = T.core.summary.merge_all()
            neural_params = (
                self.state_encoder.get_parameters()
                + self.state_decoder.get_parameters()
                + self.action_encoder.get_parameters()
                + self.action_decoder.get_parameters()
            )
            cost_params = self.cost.get_parameters()
            if len(neural_params) > 0:
                optimizer = T.core.train.AdamOptimizer(self.learning_rate)
                gradients, variables = zip(*optimizer.compute_gradients(-train_elbo, var_list=neural_params))
                gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
                self.neural_op = optimizer.apply_gradients(zip(gradients, variables))
            else:
                self.neural_op = T.core.no_op()
            if len(cost_params) > 0:
                self.cost_op = T.core.train.AdamOptimizer(self.learning_rate).minimize(-self.elbo, var_list=cost_params)
            else:
                self.cost_op = T.core.no_op()
            if len(self.kl_grads) > 0:
                if self.prior.is_dynamics_prior():
                    # opt = lambda x: T.core.train.MomentumOptimizer(x, 0.5)
                    opt = lambda x: T.core.train.GradientDescentOptimizer(x)
                else:
                    opt = T.core.train.AdamOptimizer
                self.dynamics_op = opt(self.model_learning_rate).apply_gradients([
                    (b, a) for a, b in self.kl_grads
                ])
            else:
                self.dynamics_op = T.core.no_op()
            self.train_op = T.core.group(self.neural_op, self.dynamics_op, self.cost_op)
        self.session = T.interactive_session(graph=self.graph, allow_soft_placement=True, log_device_placement=False)