Пример #1
0
    def predict(self, X):
        """Hard decision."""
        # print("PREDICT")
        # Check is fit had been called
        check_is_fitted(self, "classes_")

        # Input validation
        X = check_array(X)
        if X.shape[1] != self.X_.shape[1]:
            raise ValueError("number of features does not match")

        X_dsel = self.previous_X
        y_dsel = self.previous_y

        if self.oversampled:
            ros = RandomOverSampler(random_state=42)
            X_dsel, y_dsel = ros.fit_resample(X_dsel, y_dsel)

        if self.desMethod == "KNORAE":
            des = KNORAE(self.ensemble_, random_state=42)
        elif self.desMethod == "KNORAU":
            des = KNORAU(self.ensemble_, random_state=42)
        elif self.desMethod == "LCA":
            des = LCA(self.ensemble_, random_state=42)
        elif self.desMethod == "Rank":
            des = Rank(self.ensemble_, random_state=42)
        else:
            des = KNORAE(self.ensemble_, random_state=42)

        des.fit(X_dsel, y_dsel)
        prediction = des.predict(X)

        return prediction
Пример #2
0
    def predict(self, X):
        # Check is fit had been called
        check_is_fitted(self, "classes_")

        # Input validation
        X = check_array(X)
        if X.shape[1] != self.X_.shape[1]:
            raise ValueError("number of features does not match")

        X_dsel = self.previous_X
        y_dsel = self.previous_y

        unique, counts = np.unique(y_dsel, return_counts=True)

        k_neighbors = 5
        if counts[0] - 1 < 5:
            k_neighbors = counts[0] - 1

        if self.oversampler == "SMOTE" and k_neighbors > 0:
            smote = SMOTE(random_state=42, k_neighbors=k_neighbors)
            X_dsel, y_dsel = smote.fit_resample(X_dsel, y_dsel)
        elif self.oversampler == "svmSMOTE" and k_neighbors > 0:
            try:
                svmSmote = SVMSMOTE(random_state=42, k_neighbors=k_neighbors)
                X_dsel, y_dsel = svmSmote.fit_resample(X_dsel, y_dsel)
            except ValueError:
                pass
        elif self.oversampler == "borderline1" and k_neighbors > 0:
            borderlineSmote1 = BorderlineSMOTE(random_state=42,
                                               k_neighbors=k_neighbors,
                                               kind='borderline-1')
            X_dsel, y_dsel = borderlineSmote1.fit_resample(X_dsel, y_dsel)
        elif self.oversampler == "borderline2" and k_neighbors > 0:
            borderlineSmote2 = BorderlineSMOTE(random_state=42,
                                               k_neighbors=k_neighbors,
                                               kind='borderline-2')
            X_dsel, y_dsel = borderlineSmote2.fit_resample(X_dsel, y_dsel)
        elif self.oversampler == "ADASYN" and k_neighbors > 0:
            try:
                adasyn = ADASYN(random_state=42, n_neighbors=k_neighbors)
                X_dsel, y_dsel = adasyn.fit_resample(X_dsel, y_dsel)
            except RuntimeError:
                pass
            except ValueError:
                pass
        elif self.oversampler == "SLS" and k_neighbors > 0:
            sls = Safe_Level_SMOTE(n_neighbors=k_neighbors)
            X_dsel, y_dsel = sls.sample(X_dsel, y_dsel)

        if self.desMethod == "KNORAE":
            des = KNORAE(self.ensemble_, random_state=42)
        elif self.desMethod == "KNORAU":
            des = KNORAU(self.ensemble_, random_state=42)
        elif self.desMethod == "KNN":
            des = DESKNN(self.ensemble_, random_state=42)
        elif self.desMethod == "Clustering":
            des = DESClustering(self.ensemble_, random_state=42)
        else:
            des = KNORAE(self.ensemble_, random_state=42)

        if len(self.ensemble_) < 2:
            prediction = self.ensemble_[0].predict(X)
        else:
            des.fit(X_dsel, y_dsel)
            prediction = des.predict(X)

        return prediction