Пример #1
0
def test_kne_proba(knn_methods):
    pool_classifiers, X_dsel, y_dsel, X_test, y_test = setup_classifiers()

    kne = KNORAE(pool_classifiers, knn_classifier=knn_methods, voting='soft')
    kne.fit(X_dsel, y_dsel)
    probas = kne.predict_proba(X_test)
    expected = np.load(
        'deslib/tests/expected_values/kne_proba_integration.npy')
    assert np.allclose(probas, expected)
Пример #2
0
def test_knorae_subspaces():
    rng = np.random.RandomState(123456)
    X_dsel, X_test, X_train, y_dsel, y_test, y_train = load_dataset(None, rng)
    pool = BaggingClassifier(LogisticRegression(),
                             max_features=0.5,
                             random_state=rng).fit(X_train, y_train)

    knorae = KNORAE(pool)
    knorae.fit(X_dsel, y_dsel)
    y_pred = knorae.predict_proba(X_test).argmax(axis=1)
    assert np.isclose(accuracy_score(y_pred, y_test), 0.9787234042553191)