def is_bad(r): if settings.param.sustained_median.trigger < r.result.confidence: test_param = nvl(settings.param.test[literal_field(r.Talos.Test.name)], settings.param.suite[literal_field(r.Talos.Test.suite)]) if test_param == None: return True if test_param.disable: return False if test_param.better == "higher": diff = -r.diff elif test_param.better == "lower": diff = r.diff else: diff = abs(r.diff) # DEFAULT = ANY DIRECTION IS BAD if test_param.min_regression: if unicode(test_param.min_regression.strip()[-1]) == "%": min_diff = Math.abs(r.past_stats.mean * float(test_param.min_regression.strip()[:-1]) / 100.0) else: min_diff = Math.abs(float(test_param.min_regression)) else: min_diff = Math.abs(r.past_stats.mean * 0.01) if diff > min_diff: return True return False
def is_bad(r): if settings.param.sustained_median.trigger < r.result.confidence: test_param = settings.param.test[literal_field(r.B2G.Test.name)] if test_param == None: return True if test_param.better == "higher": diff = -r.diff else: diff = r.diff if unicode(test_param.min_regression.strip()[-1]) == "%": min_diff = Math.abs(r.past_stats.mean * float(test_param.min_regression.strip()[:-1]) / 100.0) else: min_diff = Math.abs(float(test_param.min_regression)) if diff > min_diff: return True return False