else: c = ev.Contender("DPM") c.detectorString = "DPM_Detector" c.detectorData = "detectors/dpmStarbucksLogo.zip" c.foundMap = {'Positive':easy.getPurpose('pos'), 'Negative':easy.getPurpose('neg')} contenders.append( c ); # OpenCVCascade, with special settings for anticipated poor performance if (easy.getTrainer("OpenCVCascadeTrainer")==None): print("Cascade service(s) are insufficiently configured, skipping.") else: c = ev.Contender("cascade") c.trainerString = "OpenCVCascadeTrainer" c.detectorString = "OpenCVCascadeDetector" # c.foundMap = {'any':easy.getPurpose('pos')} c.foundMap = {'positive':posPurpose, 'negative':negPurpose} detector = easy.getDetector(c.detectorString) detectorProps = easy.getDetectorProperties(detector) c.detectorProps = detectorProps; c.detectorProps.props["maxRectangles"] = "200" c.detectorProps.minNeighbors = 0; # This prevents hang up in evaluator when training has too few samples contenders.append( c ); runset = easy.createRunSet( "trainImg/kr", "pos" ) easy.addToRunSet( runset, "trainImg/ca", "neg" ) easy.printRunSetInfo( runset, printArtifacts=False, printLabels=True ) perfdata = ev.joust( contenders, runset, folds=3 ) ev.printEvaluationResults(perfdata[0])
print("BOW detector service is insufficiently configured, skipping.") else: c = ev.Contender("BOW") c.detectorString = "BOW_Detector" c.detectorData = "detectors/bowUSKOCA.zip" c.foundMap = { 'kr': easy.getPurpose('pos'), 'ca': easy.getPurpose('neg'), 'us': easy.getPurpose('neg'), 'unlabeled': easy.getPurpose('neg') } contenders.append(c) # OpenCV Cascade detector if (easy.getDetector("OpenCVCascadeDetector") == None): print( "OpenCVCascadeDetector service is insufficiently configured, skipping." ) else: c = ev.Contender("Faces") c.detectorString = "OpenCVCascadeDetector" c.detectorData = "detectors/OpencvFaces.zip" c.foundMap = { 'positive': easy.getPurpose('pos'), 'negative': easy.getPurpose('neg') } contenders.append(c) perfdata = ev.joust(contenders, runset) ev.printEvaluationResults(perfdata[0])
c.detectorData = "detectors/dpmStarbucksLogo.zip" c.foundMap = { 'Positive': easy.getPurpose('pos'), 'Negative': easy.getPurpose('neg') } contenders.append(c) # OpenCVCascade, with special settings for anticipated poor performance if (easy.getTrainer("OpenCVCascadeTrainer") == None): print("Cascade service(s) are insufficiently configured, skipping.") else: c = ev.Contender("cascade") c.trainerString = "OpenCVCascadeTrainer" c.detectorString = "OpenCVCascadeDetector" # c.foundMap = {'any':easy.getPurpose('pos')} c.foundMap = {'positive': posPurpose, 'negative': negPurpose} detector = easy.getDetector(c.detectorString) detectorProps = easy.getDetectorProperties(detector) c.detectorProps = detectorProps c.detectorProps.props["maxRectangles"] = "200" c.detectorProps.minNeighbors = 0 # This prevents hang up in evaluator when training has too few samples contenders.append(c) runset = easy.createRunSet("trainImg/kr", "pos") easy.addToRunSet(runset, "trainImg/ca", "neg") easy.printRunSetInfo(runset, printArtifacts=False, printLabels=True) perfdata = ev.joust(contenders, runset, folds=3) ev.printEvaluationResults(perfdata[0])
#easy.printRunSetInfo( runset, printArtifacts=False, printLabels=True ) contenders = [] # Bag of Words if (easy.getDetector("BOW_Detector")==None): print("BOW detector service is insufficiently configured, skipping.") else: c = ev.Contender("BOW") c.detectorString = "BOW_Detector" c.detectorData = "detectors/bowUSKOCA.zip" c.foundMap = { 'kr':easy.getPurpose('pos'), 'ca':easy.getPurpose('neg'), 'us':easy.getPurpose('neg'), 'unlabeled':easy.getPurpose('neg')} contenders.append( c ); # OpenCV Cascade detector if (easy.getDetector("OpenCVCascadeDetector")==None): print("OpenCVCascadeDetector service is insufficiently configured, skipping.") else: c = ev.Contender("Faces") c.detectorString = "OpenCVCascadeDetector" c.detectorData = "detectors/OpencvFaces.zip" c.foundMap = { 'positive':easy.getPurpose('pos'), 'negative':easy.getPurpose('neg')} contenders.append( c ); perfdata = ev.joust( contenders, runset ) ev.printEvaluationResults(perfdata[0])