if 'new' in testable:
    with open(os.path.join(outdir, 'index.html'), 'wt') as f:
        f.write('<h1>Quant Factors Zoo</h1><br>')
        f.write(' <br>')
        f.write('<p>\n')

# Momentum and divyld from CRSP monthly
if 'monthly' in testable:
    if regenerate:
        beg, end = 19251231, LAST_DATE
        intervals = {'mom12m': (2,12), 'mom36m': (13,36),
                     'mom6m': (2,6), 'mom1m': (1,1)}
        for label, past in intervals.items():
            out = DataFrame()
            for rebaldate in bd.date_range(bd.endmo(beg, past[1]), end, 'endmo'):
                start = bd.endmo(rebaldate, -past[1])
                beg1 = bd.offset(start, 1)
                end1 = bd.endmo(rebaldate, 1-past[0])
                df = crsp.get_universe(end1)
                df['start'] = crsp.get_section(dataset='monthly', fields=['ret'],
                                               date_field='date', date=start)\
                                  .reindex(df.index)
                df[label] = crsp.get_ret(beg1, end1).reindex(df.index)
                df['permno'] = df.index
                df['rebaldate'] = rebaldate
                df = df.dropna(subset=['start'])
                out = out.append(df[['rebaldate', 'permno', label]],
                                 ignore_index=True)    # append rows
            n = signals.write(out, label, overwrite=True)
Пример #2
0
plt.show()
   
# Construct monthly BEA industry returns for the same period of years
codes = Sectoring(sql, f"bea{vintage}", fillna='')
naics = pstat.build_lookup('lpermno', 'naics', fillna=0)
caps, counts, rets = [], [], []
for year in years:
    date = bd.endyr(year - 1)
    univ = crsp.get_universe(date)
    univ['bea'] = codes[naics(univ.index, date)]
    univ = univ[univ['bea'].ne('')]
    grouped = univ.groupby('bea')
    caps.append(grouped['cap'].sum().rename(year))
    counts.append(grouped['cap'].count().rename(year))
        
    months = bd.date_range(date, bd.endyr(year), 'endmo')
    for rebaldate, end in zip(months[:-1], months[1:]):
        r = pd.concat([crsp.get_ret(bd.begmo(end), end),
                       crsp.get_cap(rebaldate, use_permco=False),
                       univ['bea']], axis=1, join='inner').dropna()
        grp = r.groupby('bea')   # industry ret is sum of weighted rets
        r['wtdret'] = r['ret'].mul(r['cap'].div(grp['cap'].transform('sum')))
        rets.append(grp['wtdret'].sum(min_count=1).rename(end))
        print(end, len(r), r['wtdret'].sum() / len(grp))

# collect and average market caps, counts and returns
caps = pd.concat(caps, axis=1).mean(axis=1)     # average cap over years
counts = pd.concat(counts, axis=1).mean(axis=1) # average count
rets = pd.concat(rets, axis=1)

# create node variables: count and cap (will take logs of)
signals = chunk_signal(df)
holdings = famafrench_sorts(crsp,
                            'hml',
                            signals,
                            rebalbeg,
                            LAST_DATE,
                            window=12,
                            months=[6],
                            rebals=rebals)['holdings']

# Compute MOM momentum factor
label = 'mom'
past = (2, 12)
df = []  # collect each month's momentum signal values
rebalend = bd.endmo(LAST_DATE, -1)
for rebaldate in bd.date_range(rebalbeg, rebalend, 'endmo'):
    beg = bd.endmo(rebaldate, -past[1])  # require price at this date
    start = bd.offset(beg, 1)  # start date, inclusive, of signal
    end = bd.endmo(rebaldate, 1 - past[0])  # end date of signal
    p = [
        crsp.get_universe(rebaldate),  # retrieve prices and construct signal
        crsp.get_ret(start, end)['ret'].rename(label),
        crsp.get_section('monthly', ['prc'], 'date', beg)['prc'].rename('beg'),
        crsp.get_section('monthly', ['prc'], 'date', end)['prc'].rename('end')
    ]
    q = pd.concat(p, axis=1, join='inner').reset_index().dropna()
    q['rebaldate'] = rebaldate
    df.append(q[['permno', 'rebaldate', label]])
    print(rebaldate, len(df), len(q))
df = pd.concat(df)
signals = chunk_signal(df)