if 'new' in testable: with open(os.path.join(outdir, 'index.html'), 'wt') as f: f.write('<h1>Quant Factors Zoo</h1><br>') f.write(' <br>') f.write('<p>\n') # Momentum and divyld from CRSP monthly if 'monthly' in testable: if regenerate: beg, end = 19251231, LAST_DATE intervals = {'mom12m': (2,12), 'mom36m': (13,36), 'mom6m': (2,6), 'mom1m': (1,1)} for label, past in intervals.items(): out = DataFrame() for rebaldate in bd.date_range(bd.endmo(beg, past[1]), end, 'endmo'): start = bd.endmo(rebaldate, -past[1]) beg1 = bd.offset(start, 1) end1 = bd.endmo(rebaldate, 1-past[0]) df = crsp.get_universe(end1) df['start'] = crsp.get_section(dataset='monthly', fields=['ret'], date_field='date', date=start)\ .reindex(df.index) df[label] = crsp.get_ret(beg1, end1).reindex(df.index) df['permno'] = df.index df['rebaldate'] = rebaldate df = df.dropna(subset=['start']) out = out.append(df[['rebaldate', 'permno', label]], ignore_index=True) # append rows n = signals.write(out, label, overwrite=True)
plt.show() # Construct monthly BEA industry returns for the same period of years codes = Sectoring(sql, f"bea{vintage}", fillna='') naics = pstat.build_lookup('lpermno', 'naics', fillna=0) caps, counts, rets = [], [], [] for year in years: date = bd.endyr(year - 1) univ = crsp.get_universe(date) univ['bea'] = codes[naics(univ.index, date)] univ = univ[univ['bea'].ne('')] grouped = univ.groupby('bea') caps.append(grouped['cap'].sum().rename(year)) counts.append(grouped['cap'].count().rename(year)) months = bd.date_range(date, bd.endyr(year), 'endmo') for rebaldate, end in zip(months[:-1], months[1:]): r = pd.concat([crsp.get_ret(bd.begmo(end), end), crsp.get_cap(rebaldate, use_permco=False), univ['bea']], axis=1, join='inner').dropna() grp = r.groupby('bea') # industry ret is sum of weighted rets r['wtdret'] = r['ret'].mul(r['cap'].div(grp['cap'].transform('sum'))) rets.append(grp['wtdret'].sum(min_count=1).rename(end)) print(end, len(r), r['wtdret'].sum() / len(grp)) # collect and average market caps, counts and returns caps = pd.concat(caps, axis=1).mean(axis=1) # average cap over years counts = pd.concat(counts, axis=1).mean(axis=1) # average count rets = pd.concat(rets, axis=1) # create node variables: count and cap (will take logs of)
signals = chunk_signal(df) holdings = famafrench_sorts(crsp, 'hml', signals, rebalbeg, LAST_DATE, window=12, months=[6], rebals=rebals)['holdings'] # Compute MOM momentum factor label = 'mom' past = (2, 12) df = [] # collect each month's momentum signal values rebalend = bd.endmo(LAST_DATE, -1) for rebaldate in bd.date_range(rebalbeg, rebalend, 'endmo'): beg = bd.endmo(rebaldate, -past[1]) # require price at this date start = bd.offset(beg, 1) # start date, inclusive, of signal end = bd.endmo(rebaldate, 1 - past[0]) # end date of signal p = [ crsp.get_universe(rebaldate), # retrieve prices and construct signal crsp.get_ret(start, end)['ret'].rename(label), crsp.get_section('monthly', ['prc'], 'date', beg)['prc'].rename('beg'), crsp.get_section('monthly', ['prc'], 'date', end)['prc'].rename('end') ] q = pd.concat(p, axis=1, join='inner').reset_index().dropna() q['rebaldate'] = rebaldate df.append(q[['permno', 'rebaldate', label]]) print(rebaldate, len(df), len(q)) df = pd.concat(df) signals = chunk_signal(df)