Пример #1
0
    def _calcGeomCoeff(self, var):
        self._checkCoeff(var)

        if self.coeff.shape != () and self.coeff.shape[-1] != len(var.mesh.cellVolumes):
            return self.coeff[..., numerix.newaxis] * CellVariable(mesh=var.mesh, value=var.mesh.cellVolumes)
        else:
            return self.coeff * CellVariable(mesh=var.mesh, value=var.mesh.cellVolumes)
Пример #2
0
 def copy(self):
     """
     Copy the value of the `NoiseVariable` to a static `CellVariable`.
     """
     return CellVariable(mesh=self.mesh,
                         name=self.name + "_old",
                         value=self.value,
                         hasOld=0)
Пример #3
0
 def extendVariable(self, extensionVariable, order=2):
     if not hasattr(self, 'fineDistanceVariable'):
         self.fineDistanceVariable = DistanceVariable(mesh=self.mesh.fineMesh)
     if not hasattr(self, 'fineExtensionVariable'):
         self.fineExtensionVariable = CellVariable(mesh=self.mesh.fineMesh)
     self.fineDistanceVariable[:] = self(self.mesh.fineMesh.cellCenters)
     self.fineExtensionVariable[:] = extensionVariable(self.mesh.fineMesh.cellCenters)
     self.fineDistanceVariable.extendVariable(self.fineExtensionVariable, order=order)
     extensionVariable[:] = self.fineExtensionVariable(self.mesh.cellCenters)
    def _buildAndAddMatrices(self,
                             var,
                             SparseMatrix,
                             boundaryConditions=(),
                             dt=None,
                             transientGeomCoeff=None,
                             diffusionGeomCoeff=None,
                             buildExplicitIfOther=False):
        """Build matrices of constituent Terms and collect them

        Only called at top-level by `_prepareLinearSystem()`
        
        """

        from fipy.matrices.offsetSparseMatrix import OffsetSparseMatrix
        SparseMatrix = OffsetSparseMatrix(SparseMatrix=SparseMatrix,
                                          numberOfVariables=len(self._vars),
                                          numberOfEquations=len(
                                              self._uncoupledTerms))
        matrix = SparseMatrix(mesh=var.mesh)
        RHSvectors = []

        for equationIndex, uncoupledTerm in enumerate(self._uncoupledTerms):

            SparseMatrix.equationIndex = equationIndex
            termRHSvector = 0
            termMatrix = SparseMatrix(mesh=var.mesh)

            for varIndex, tmpVar in enumerate(var.vars):

                SparseMatrix.varIndex = varIndex

                tmpVar, tmpMatrix, tmpRHSvector = uncoupledTerm._buildAndAddMatrices(
                    tmpVar,
                    SparseMatrix,
                    boundaryConditions=(),
                    dt=dt,
                    transientGeomCoeff=uncoupledTerm._getTransientGeomCoeff(
                        tmpVar),
                    diffusionGeomCoeff=uncoupledTerm._getDiffusionGeomCoeff(
                        tmpVar),
                    buildExplicitIfOther=buildExplicitIfOther)

                termMatrix += tmpMatrix
                termRHSvector += tmpRHSvector

            uncoupledTerm._buildCache(termMatrix, termRHSvector)
            RHSvectors += [CellVariable(value=termRHSvector, mesh=var.mesh)]
            matrix += termMatrix

        return (var, matrix, _CoupledCellVariable(RHSvectors))
    def _buildMatrix(self,
                     var,
                     SparseMatrix,
                     boundaryConditions=(),
                     dt=None,
                     transientGeomCoeff=None,
                     diffusionGeomCoeff=None):
        vec = self.equation.justResidualVector(
            var=None, boundaryConditions=boundaryConditions, dt=dt)

        self.coeff = CellVariable(mesh=var.mesh,
                                  value=vec * self.underRelaxation)
        self.geomCoeff = None
        self.coeffVectors = None

        return _ExplicitSourceTerm._buildMatrix(
            self,
            var=var,
            SparseMatrix=SparseMatrix,
            boundaryConditions=boundaryConditions,
            dt=dt,
            transientGeomCoeff=transientGeomCoeff,
            diffusionGeomCoeff=diffusionGeomCoeff)
Пример #6
0
#Laplacian=0

nx = 50
dx = 1.
from fipy.meshes.grid1D import Grid1D
mesh = Grid1D(nx=nx, dx=dx)

from fipy.variables.cellVariable import CellVariable
phi = CellVariable(name="solution variable", mesh=mesh, value=0)

z = CellVariable(name="dummy", mesh=mesh, value=0)

valueLeft = 1
valueRight = 0

from fipy.boundaryConditions.fixedValue import FixedValue
BCs = (FixedValue(faces=mesh.getFacesRight(), value=valueRight),
       FixedValue(faces=mesh.getFacesLeft(), value=valueLeft))

from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm

eqX = ExplicitDiffusionTerm(coeff=1)

from fipy import viewers
viewer = viewers.make(vars=(phi), limits={'datamin': 0., 'datamax': 1.})
viewer.plot()
eqX.solve(var=phi, boundaryConditions=BCs)
viewer.plot()
Пример #7
0
distanceVariable = DistanceVariable(
    name='level set variable',
    mesh=mesh,
    value=numerix.sqrt((mesh.getCellCenters()[:, 0] - L / 2.)**2 +
                       (mesh.getCellCenters()[:, 1] - L / 2.)**2) -
    initialRadius,
    hasOld=1)

initialSurfactantValue = 1.

surfactantVariable = SurfactantVariable(value=initialSurfactantValue,
                                        distanceVar=distanceVariable)

velocity = CellVariable(
    name='velocity',
    mesh=mesh,
    value=1.,
)

advectionEquation = buildHigherOrderAdvectionEquation(advectionCoeff=velocity)

surfactantEquation = SurfactantEquation(distanceVar=distanceVariable)

if __name__ == '__main__':

    import fipy.viewers
    distanceViewer = fipy.viewers.make(vars=distanceVariable,
                                       limits={
                                           'datamin': -initialRadius,
                                           'datamax': initialRadius
                                       })
Пример #8
0
newIntensity = np.zeros(nx * ny * nz)

mesh = Grid3D(dx, dy, dz, nx, ny, nz)

print(intensity.shape)
print("Setting phase...")

# flatten 3D array to 1D
newIntensity = intensity.flatten()
print("newIntensity:")
print(newIntensity)

# set phase
t3 = time.time()
phase = CellVariable(mesh, value=0.0)
phase.setValue(1 - newIntensity /
               255)  #Thresholding step. Values less than 255 are assigned 0.
#empty space 0-254 -> 1 - 0/255 -> 1
#particles 255 -> 1 - 1 -> 0
#sets empty space phase=0, particles phase=1

print("phase:")
print(phase)

t4 = time.time()
print("Phase Set!")

# Set diffusivity.
print("Setting D...")
t5 = time.time()
Пример #9
0
            and (face.getID() in bigMesh.getExteriorFaces())):
        return 1
    else:
        return 0


def allOthers(face):

    if ((leftSide(face) or inMiddle(face) or rightSide(face))
            or not (face.getID() in bigMesh.getExteriorFaces())):
        return 0
    else:
        return 1


var = CellVariable(name="concentration", mesh=bigMesh, value=valueLeft)

eqn = TransientTerm() == ExplicitDiffusionTerm()

exteriorFaces = bigMesh.getExteriorFaces()
xFace = exteriorFaces.getCenters()[..., 0]

boundaryConditions = (
    FixedValue(exteriorFaces.where(xFace**2 < 0.000000000000001), valueLeft),
    FixedValue(exteriorFaces.where((xFace - (dx * nx))**2 < 0.000000000000001),
               (valueLeft + valueRight) * 0.5),
    FixedValue(
        exteriorFaces.where((xFace - (2 * dx * nx))**2 < 0.000000000000001),
        valueRight))

answer = numerix.array([
Пример #10
0
from fipy.terms.transientTerm import TransientTerm
from fipy.terms.implicitSourceTerm import ImplicitSourceTerm
from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm

params = parameters['case 2']

nx = 50
ny = 50
dx = 1.
L = nx * dx

mesh = Grid2D(nx=nx, ny=ny, dx=dx, dy=1.)

shift = 1.

KMVar = CellVariable(mesh=mesh, value=params['KM'] * shift, hasOld=1)
KCVar = CellVariable(mesh=mesh, value=params['KC'] * shift, hasOld=1)
TMVar = CellVariable(mesh=mesh, value=params['TM'] * shift, hasOld=1)
TCVar = CellVariable(mesh=mesh, value=params['TC'] * shift, hasOld=1)
P3Var = CellVariable(mesh=mesh, value=params['P3'] * shift, hasOld=1)
P2Var = CellVariable(mesh=mesh, value=params['P2'] * shift, hasOld=1)
RVar = CellVariable(mesh=mesh, value=params['R'], hasOld=1)

PN = P3Var + P2Var

KMscCoeff = params['chiK'] * (RVar + 1) * (1 - KCVar -
                                           KMVar.getCellVolumeAverage())
KMspCoeff = params['lambdaK'] / (1 + PN / params['kappaK'])
KMEq = TransientTerm() - KMscCoeff + ImplicitSourceTerm(KMspCoeff)

TMscCoeff = params['chiT'] * (1 - TCVar - TMVar.getCellVolumeAverage())
Пример #11
0
   1

"""
__docformat__ = 'restructuredtext'

from fipy.meshes.grid1D import Grid1D

Lx = 1.
nx = 100000
dx = Lx / nx

mesh = Grid1D(dx=dx, nx=nx)

from fipy.tools import numerix
from fipy.variables.cellVariable import CellVariable
var = CellVariable(mesh=mesh)

from fipy.solvers.linearLUSolver import LinearLUSolver
from fipy.boundaryConditions.nthOrderBoundaryCondition import NthOrderBoundaryCondition
from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
from fipy.terms.transientTerm import TransientTerm

eq = ImplicitDiffusionTerm((1.0, 1.0))

BCs = (NthOrderBoundaryCondition(mesh.getFacesLeft(), 0., 0),
       NthOrderBoundaryCondition(mesh.getFacesRight(), Lx, 0),
       NthOrderBoundaryCondition(mesh.getFacesLeft(), 0., 2),
       NthOrderBoundaryCondition(mesh.getFacesRight(), 0., 2))

solver = LinearLUSolver(iterations=10)
Пример #12
0
def runLeveler(kLeveler=0.018,
               bulkLevelerConcentration=0.02,
               cellSize=0.1e-7,
               rateConstant=0.00026,
               initialAcceleratorCoverage=0.0,
               levelerDiffusionCoefficient=5e-10,
               numberOfSteps=400,
               displayRate=10,
               displayViewers=True):

    kLevelerConsumption = 0.0005
    aspectRatio = 1.5
    faradaysConstant = 9.6485e4
    gasConstant = 8.314
    acceleratorDiffusionCoefficient = 4e-10
    siteDensity = 6.35e-6
    atomicVolume = 7.1e-6
    charge = 2
    metalDiffusionCoefficient = 4e-10
    temperature = 298.
    overpotential = -0.25
    bulkMetalConcentration = 250.
    bulkAcceleratorConcentration = 50.0e-3
    initialLevelerCoverage = 0.
    cflNumber = 0.2
    numberOfCellsInNarrowBand = 20
    cellsBelowTrench = 10
    trenchDepth = 0.4e-6
    trenchSpacing = 0.6e-6
    boundaryLayerDepth = 98.7e-6
    i0Suppressor = 0.3
    i0Accelerator = 22.5
    alphaSuppressor = 0.5
    alphaAccelerator = 0.4
    alphaAdsorption = 0.62
    m = 4
    b = 2.65
    A = 0.3
    Ba = -40
    Bb = 60
    Vd = 0.098
    Bd = 0.0008

    etaPrime = faradaysConstant * overpotential / gasConstant / temperature

    from fipy import TrenchMesh
    from fipy.tools import numerix
    mesh = TrenchMesh(cellSize=cellSize,
                      trenchSpacing=trenchSpacing,
                      trenchDepth=trenchDepth,
                      boundaryLayerDepth=boundaryLayerDepth,
                      aspectRatio=aspectRatio,
                      angle=numerix.pi * 4. / 180.,
                      bowWidth=0.,
                      overBumpRadius=0.,
                      overBumpWidth=0.)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
    distanceVar = DistanceVariable(name='distance variable',
                                   mesh=mesh,
                                   value=-1,
                                   narrowBandWidth=narrowBandWidth)

    distanceVar.setValue(1, where=mesh.getElectrolyteMask())

    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)
    from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
    levelerVar = SurfactantVariable(name="leveler variable",
                                    value=initialLevelerCoverage,
                                    distanceVar=distanceVar)

    acceleratorVar = SurfactantVariable(name="accelerator variable",
                                        value=initialAcceleratorCoverage,
                                        distanceVar=distanceVar)

    from fipy.variables.cellVariable import CellVariable
    bulkAcceleratorVar = CellVariable(name='bulk accelerator variable',
                                      mesh=mesh,
                                      value=bulkAcceleratorConcentration)

    bulkLevelerVar = CellVariable(name='bulk leveler variable',
                                  mesh=mesh,
                                  value=bulkLevelerConcentration)

    metalVar = CellVariable(name='metal variable',
                            mesh=mesh,
                            value=bulkMetalConcentration)

    def depositionCoeff(alpha, i0):
        expo = numerix.exp(-alpha * etaPrime)
        return 2 * i0 * (expo - expo * numerix.exp(etaPrime))

    coeffSuppressor = depositionCoeff(alphaSuppressor, i0Suppressor)
    coeffAccelerator = depositionCoeff(alphaAccelerator, i0Accelerator)

    exchangeCurrentDensity = acceleratorVar.getInterfaceVar() * (
        coeffAccelerator - coeffSuppressor) + coeffSuppressor

    currentDensity = metalVar / bulkMetalConcentration * exchangeCurrentDensity

    depositionRateVariable = currentDensity * atomicVolume / charge / faradaysConstant

    extensionVelocityVariable = CellVariable(name='extension velocity',
                                             mesh=mesh,
                                             value=depositionRateVariable)

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
             import AdsorbingSurfactantEquation

    kAccelerator = rateConstant * numerix.exp(-alphaAdsorption * etaPrime)
    kAcceleratorConsumption = Bd + A / (numerix.exp(Ba *
                                                    (overpotential + Vd)) +
                                        numerix.exp(Bb * (overpotential + Vd)))
    q = m * overpotential + b

    levelerSurfactantEquation = AdsorbingSurfactantEquation(
        levelerVar,
        distanceVar=distanceVar,
        bulkVar=bulkLevelerVar,
        rateConstant=kLeveler,
        consumptionCoeff=kLevelerConsumption * depositionRateVariable)

    accVar1 = acceleratorVar.getInterfaceVar()
    accVar2 = (accVar1 > 0) * accVar1
    accConsumptionCoeff = kAcceleratorConsumption * (accVar2**(q - 1))

    acceleratorSurfactantEquation = AdsorbingSurfactantEquation(
        acceleratorVar,
        distanceVar=distanceVar,
        bulkVar=bulkAcceleratorVar,
        rateConstant=kAccelerator,
        otherVar=levelerVar,
        otherBulkVar=bulkLevelerVar,
        otherRateConstant=kLeveler,
        consumptionCoeff=accConsumptionCoeff)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
         import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff=extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar=metalVar,
        distanceVar=distanceVar,
        depositionRate=depositionRateVariable,
        diffusionCoeff=metalDiffusionCoefficient,
        metalIonMolarVolume=atomicVolume)

    metalEquationBCs = FixedValue(mesh.getTopFaces(), bulkMetalConcentration)

    from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
         import buildSurfactantBulkDiffusionEquation

    bulkAcceleratorEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar=bulkAcceleratorVar,
        distanceVar=distanceVar,
        surfactantVar=acceleratorVar,
        otherSurfactantVar=levelerVar,
        diffusionCoeff=acceleratorDiffusionCoefficient,
        rateConstant=kAccelerator * siteDensity)

    bulkAcceleratorEquationBCs = (FixedValue(mesh.getTopFaces(),
                                             bulkAcceleratorConcentration), )

    bulkLevelerEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar=bulkLevelerVar,
        distanceVar=distanceVar,
        surfactantVar=levelerVar,
        diffusionCoeff=levelerDiffusionCoefficient,
        rateConstant=kLeveler * siteDensity)

    bulkLevelerEquationBCs = (FixedValue(mesh.getTopFaces(),
                                         bulkLevelerConcentration), )

    eqnTuple = ((advectionEquation, distanceVar,
                 ()), (levelerSurfactantEquation, levelerVar,
                       ()), (acceleratorSurfactantEquation, acceleratorVar,
                             ()), (metalEquation, metalVar, metalEquationBCs),
                (bulkAcceleratorEquation, bulkAcceleratorVar,
                 bulkAcceleratorEquationBCs),
                (bulkLevelerEquation, bulkLevelerVar, bulkLevelerEquationBCs))

    levelSetUpdateFrequency = int(0.7 * narrowBandWidth / cellSize /
                                  cflNumber / 2)

    totalTime = 0.0

    if displayViewers:
        from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
        viewers = (MayaviSurfactantViewer(distanceVar,
                                          acceleratorVar.getInterfaceVar(),
                                          zoomFactor=1e6,
                                          limits={
                                              'datamax': 0.5,
                                              'datamin': 0.0
                                          },
                                          smooth=1,
                                          title='accelerator coverage'),
                   MayaviSurfactantViewer(distanceVar,
                                          levelerVar.getInterfaceVar(),
                                          zoomFactor=1e6,
                                          limits={
                                              'datamax': 0.5,
                                              'datamin': 0.0
                                          },
                                          smooth=1,
                                          title='leveler coverage'))

    for step in range(numberOfSteps):

        if displayViewers:
            if step % displayRate == 0:
                for viewer in viewers:
                    viewer.plot()

        if step % levelSetUpdateFrequency == 0:
            distanceVar.calcDistanceFunction(deleteIslands=True)

        extensionVelocityVariable.setValue(depositionRateVariable)

        extOnInt = numerix.where(
            distanceVar > 0,
            numerix.where(distanceVar < 2 * cellSize,
                          extensionVelocityVariable, 0), 0)

        dt = cflNumber * cellSize / numerix.max(extOnInt)

        id = numerix.max(numerix.nonzero(distanceVar._getInterfaceFlag()))
        distanceVar.extendVariable(extensionVelocityVariable,
                                   deleteIslands=True)

        extensionVelocityVariable[mesh.getFineMesh().getNumberOfCells():] = 0.

        for eqn, var, BCs in eqnTuple:
            var.updateOld()

        for eqn, var, BCs in eqnTuple:
            eqn.solve(var, boundaryConditions=BCs, dt=dt)

        totalTime += dt

    try:
        testFile = 'testLeveler.gz'
        import os
        import examples.levelSet.electroChem
        from fipy.tools import dump
        data = dump.read(
            os.path.join(examples.levelSet.electroChem.__path__[0], testFile))
        N = mesh.getFineMesh().getNumberOfCells()
        print numerix.allclose(data[:N], levelerVar[:N], rtol=1e-3)
    except:
        return 0
Пример #13
0
#!/usr/bin/env python
L = 1.0
N = 40
dL = L / N
viscosity = 1.
pressureRelaxation = 0.2
velocityRelaxation = 0.5

sweeps=10

from fipy.meshes.grid2D import Grid2D
mesh = Grid2D(nx=N, ny=N, dx=dL, dy=dL)

from fipy.variables.cellVariable import CellVariable

psi = CellVariable(mesh=mesh, name='stream function')

Xhat=(1,0)
Yhat=(0,1)

u=psi.getGrad().dot(Yhat)
v=-psi.getGrad().dot(Xhat)

U=psi.getFaceGrad()

from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm

eq=ImplicitDiffusionTerm(0.00001) \
	 + u * u.getGrad().dot(Xhat) \
	 + v * u.getGrad().dot(Yhat) \
	 - 2 * u.getGrad().dot(Yhat).getGrad().dot(Yhat)
Пример #14
0
for b in grid.boundaries():
    gr = boundGrad2[b.id()]
    #    gr = c.grad(c.center(), pN)
    ax.arrow(b.center()[0], b.center()[1], gr[0], gr[1], color='green')

ax.set_xlim([-0.5, 3.5])
ax.set_ylim([-0.5, 3.1])
# F = grid.grad(pot)
# print(F)
print("div:", divergence(grid, boundGrad))

sys.path.append('/home/carsten/src/fipy')
mesh = Grid2D(nx=3, ny=2)
val = np.arange(3 * 2.)
var = CellVariable(mesh=mesh, value=val)
print(var.faceGrad._calcValueNoInline())
print('-____________')

# print(var.faceGrad)
print(var.faceGrad.divergence)
# print(var.__pos__)
# [ 4.  3.  2. -2. -3. -4.]

ax, cbar = show(grid, np.array(var))
show(grid, axes=ax)
X, Y = mesh.getCellCenters()
gr = var.grad.numericValue
m = 1
for i in range(len(X)):
    ax.arrow(X[i], Y[i], gr[0][i], gr[1][i])
Пример #15
0
def runSimpleTrenchSystem(faradaysConstant=9.6e4,
                          gasConstant=8.314,
                          transferCoefficient=0.5,
                          rateConstant0=1.76,
                          rateConstant3=-245e-6,
                          catalystDiffusion=1e-9,
                          siteDensity=9.8e-6,
                          molarVolume=7.1e-6,
                          charge=2,
                          metalDiffusion=5.6e-10,
                          temperature=298.,
                          overpotential=-0.3,
                          metalConcentration=250.,
                          catalystConcentration=5e-3,
                          catalystCoverage=0.,
                          currentDensity0=0.26,
                          currentDensity1=45.,
                          cellSize=0.1e-7,
                          trenchDepth=0.5e-6,
                          aspectRatio=2.,
                          trenchSpacing=0.6e-6,
                          boundaryLayerDepth=0.3e-6,
                          numberOfSteps=5,
                          displayViewers=True):

    cflNumber = 0.2
    numberOfCellsInNarrowBand = 10
    cellsBelowTrench = 10

    yCells = cellsBelowTrench \
             + int((trenchDepth + boundaryLayerDepth) / cellSize)

    xCells = int(trenchSpacing / 2 / cellSize)

    from fipy.meshes.grid2D import Grid2D
    mesh = Grid2D(dx=cellSize, dy=cellSize, nx=xCells, ny=yCells)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize
    from fipy.models.levelSet.distanceFunction.distanceVariable import \
         DistanceVariable

    distanceVar = DistanceVariable(name='distance variable',
                                   mesh=mesh,
                                   value=-1,
                                   narrowBandWidth=narrowBandWidth,
                                   hasOld=1)

    bottomHeight = cellsBelowTrench * cellSize
    trenchHeight = bottomHeight + trenchDepth
    trenchWidth = trenchDepth / aspectRatio
    sideWidth = (trenchSpacing - trenchWidth) / 2

    x, y = mesh.getCellCenters()[..., 0], mesh.getCellCenters()[..., 1]
    distanceVar.setValue(1,
                         where=(y > trenchHeight) |
                         ((y > bottomHeight) &
                          (x < xCells * cellSize - sideWidth)))

    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)

    from fipy.models.levelSet.surfactant.surfactantVariable import \
         SurfactantVariable

    catalystVar = SurfactantVariable(name="catalyst variable",
                                     value=catalystCoverage,
                                     distanceVar=distanceVar)

    from fipy.variables.cellVariable import CellVariable

    bulkCatalystVar = CellVariable(name='bulk catalyst variable',
                                   mesh=mesh,
                                   value=catalystConcentration)

    metalVar = CellVariable(name='metal variable',
                            mesh=mesh,
                            value=metalConcentration)

    expoConstant = -transferCoefficient * faradaysConstant \
                   / (gasConstant * temperature)

    tmp = currentDensity1 * catalystVar.getInterfaceVar()

    exchangeCurrentDensity = currentDensity0 + tmp

    import fipy.tools.numerix as numerix
    expo = numerix.exp(expoConstant * overpotential)
    currentDensity = expo * exchangeCurrentDensity * metalVar \
                     / metalConcentration

    depositionRateVariable = currentDensity * molarVolume \
                             / (charge * faradaysConstant)

    extensionVelocityVariable = CellVariable(name='extension velocity',
                                             mesh=mesh,
                                             value=depositionRateVariable)

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
                import AdsorbingSurfactantEquation

    surfactantEquation = AdsorbingSurfactantEquation(
        surfactantVar=catalystVar,
        distanceVar=distanceVar,
        bulkVar=bulkCatalystVar,
        rateConstant=rateConstant0 + rateConstant3 * overpotential**3)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
                   import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff=extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
                         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar=metalVar,
        distanceVar=distanceVar,
        depositionRate=depositionRateVariable,
        diffusionCoeff=metalDiffusion,
        metalIonMolarVolume=molarVolume,
    )

    metalEquationBCs = FixedValue(mesh.getFacesTop(), metalConcentration)

    from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
                    import buildSurfactantBulkDiffusionEquation

    bulkCatalystEquation = buildSurfactantBulkDiffusionEquation(
        bulkVar=bulkCatalystVar,
        distanceVar=distanceVar,
        surfactantVar=catalystVar,
        diffusionCoeff=catalystDiffusion,
        rateConstant=rateConstant0 * siteDensity)

    catalystBCs = FixedValue(mesh.getFacesTop(), catalystConcentration)

    if displayViewers:
        try:
            from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
            viewers = (MayaviSurfactantViewer(distanceVar,
                                              catalystVar.getInterfaceVar(),
                                              zoomFactor=1e6,
                                              limits={
                                                  'datamax': 0.5,
                                                  'datamin': 0.0
                                              },
                                              smooth=1,
                                              title='catalyst coverage'), )
        except:
            from fipy.viewers import make
            viewers = (make(distanceVar,
                            limits={
                                'datamin': -1e-9,
                                'datamax': 1e-9
                            }), make(catalystVar.getInterfaceVar()))
    else:
        viewers = ()

    levelSetUpdateFrequency = int(0.8 * narrowBandWidth \
                                  / (cellSize * cflNumber * 2))

    for step in range(numberOfSteps):

        if step % 5 == 0:
            for viewer in viewers:
                viewer.plot()

        if step % levelSetUpdateFrequency == 0:
            distanceVar.calcDistanceFunction()

        extensionVelocityVariable.setValue(depositionRateVariable())

        distanceVar.updateOld()
        catalystVar.updateOld()
        metalVar.updateOld()
        bulkCatalystVar.updateOld()

        distanceVar.extendVariable(extensionVelocityVariable)
        dt = cflNumber * cellSize / numerix.max(extensionVelocityVariable)

        advectionEquation.solve(distanceVar, dt=dt)
        surfactantEquation.solve(catalystVar, dt=dt)
        metalEquation.solve(metalVar,
                            dt=dt,
                            boundaryConditions=metalEquationBCs)
        bulkCatalystEquation.solve(bulkCatalystVar,
                                   dt=dt,
                                   boundaryConditions=catalystBCs)

    try:
        import os
        import examples.levelSet.electroChem
        filepath = os.path.join(examples.levelSet.electroChem.__path__[0],
                                'test.gz')

        from fipy.tools import dump
        from fipy.tools import numerix
        print catalystVar.allclose(numerix.array(dump.read(filepath)),
                                   rtol=1e-4)
    except:
        return 0
Пример #16
0
    distanceVar.setValue(1,
                         where=(y > trenchHeight)
                         | ((y > bottomHeight)
                            & (x < xCells * cellSize - sideWidth)))

    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)
    from fipy.models.levelSet.surfactant.surfactantVariable import \
        SurfactantVariable

    catalystVar = SurfactantVariable(name="catalyst variable",
                                     value=catalystCoverage,
                                     distanceVar=distanceVar)

    from fipy.variables.cellVariable import CellVariable
    bulkCatalystVar = CellVariable(name='bulk catalyst variable',
                                   mesh=mesh,
                                   value=catalystConcentration)

    from fipy.variables.cellVariable import CellVariable
    metalVar = CellVariable(name='metal variable',
                            mesh=mesh,
                            value=bulkMetalConcentration)

    bench.stop('variables')

    bench.start()

    expoConstant = -transferCoefficient * faradaysConstant \
                   / (gasConstant * temperature)

    tmp = currentDensity1 \
Пример #17
0
 def _calcValue(self):
     mesh = self.var.mesh
     volumes = CellVariable(mesh=mesh, value=mesh.cellVolumes)
     return (self.var * volumes).sum() / volumes.sum()
Пример #18
0
    bench.stop('mesh')

    bench.start()

    timeStepDuration = 5e-5
    tau = 3e-4
    alpha = 0.015
    c = 0.02
    N = 4.
    kappa1 = 0.9
    kappa2 = 20.
    tempDiffusionCoeff = 2.25
    theta = 0.
    from fipy.variables.cellVariable import CellVariable
    phase = CellVariable(name='phase field', mesh=mesh, hasOld=1)
    x, y = mesh.getCellCenters()[..., 0], mesh.getCellCenters()[..., 1]
    phase.setValue(1.,
                   where=(x - seedCenter[0])**2 +
                   (y - seedCenter[1])**2 < radius**2)
    temperature = CellVariable(name='temperature',
                               mesh=mesh,
                               value=initialTemperature,
                               hasOld=1)

    bench.stop('variables')

    bench.start()

    from fipy.tools import numerix
    mVar = phase - 0.5 - kappa1 / numerix.pi * \
Пример #19
0
dx = 2.
dy = 2.

L = dx * nx

asq = 1.0
epsilon = 1
diffusionCoeff = 1

from fipy.meshes.grid2D import Grid2D
mesh = Grid2D(dx, dy, nx, ny)

from fipy.variables.cellVariable import CellVariable
from fipy.tools.numerix import random

var = CellVariable(name="phase field", mesh=mesh, value=random.random(nx * ny))

faceVar = var.getArithmeticFaceValue()
doubleWellDerivative = asq * (1 - 6 * faceVar * (1 - faceVar))

from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
from fipy.terms.transientTerm import TransientTerm
diffTerm2 = ImplicitDiffusionTerm(coeff=(diffusionCoeff *
                                         doubleWellDerivative, ))
diffTerm4 = ImplicitDiffusionTerm(coeff=(diffusionCoeff, -epsilon**2))
eqch = TransientTerm() - diffTerm2 - diffTerm4

from fipy.solvers.linearPCGSolver import LinearPCGSolver
from fipy.solvers.linearLUSolver import LinearLUSolver
##solver = LinearLUSolver(tolerance = 1e-15,steps = 1000)
solver = LinearPCGSolver(tolerance=1e-15, steps=1000)
Пример #20
0
import sys
from fipy.tools import numerix

valueLeft = 0.
valueRight = 1.

import examples.diffusion.steadyState.mesh20x20
import os.path
mesh = GmshImporter2D(
    os.path.join(examples.diffusion.steadyState.mesh20x20.__path__[0],
                 'modifiedMesh.msh'))

##    "%s/%s" % (sys.__dict__['path'][0], "examples/diffusion/steadyState/mesh20x20/modifiedMesh.msh"))

var = CellVariable(name="solution variable", mesh=mesh, value=valueLeft)

exteriorFaces = mesh.getExteriorFaces()
xFace = exteriorFaces.getCenters()[..., 0]
boundaryConditions = (FixedValue(
    exteriorFaces.where(xFace**2 < 0.000000000000001), valueLeft),
                      FixedValue(
                          exteriorFaces.where(
                              (xFace - 20)**2 < 0.000000000000001),
                          valueRight))

if __name__ == '__main__':
    ImplicitDiffusionTerm().solve(var, boundaryConditions=boundaryConditions)
    viewer = fipy.viewers.make(vars=var)
    viewer.plot()
    varArray = numerix.array(var)
Пример #21
0
def runGold(faradaysConstant=9.6e4,
            consumptionRateConstant=2.6e+6,
            molarVolume=10.21e-6,
            charge=1.0,
            metalDiffusion=1.7e-9,
            metalConcentration=20.0,
            catalystCoverage=0.15,
            currentDensity0=3e-2 * 16,
            currentDensity1=6.5e-1 * 16,
            cellSize=0.1e-7,
            trenchDepth=0.2e-6,
            aspectRatio=1.47,
            trenchSpacing=0.5e-6,
            boundaryLayerDepth=90.0e-6,
            numberOfSteps=10,
            taperAngle=6.0,
            displayViewers=True):

    cflNumber = 0.2
    numberOfCellsInNarrowBand = 20
    cellsBelowTrench = 10

    from fipy.tools import numerix
    from fipy import TrenchMesh
    mesh = TrenchMesh(cellSize=cellSize,
                      trenchSpacing=trenchSpacing,
                      trenchDepth=trenchDepth,
                      boundaryLayerDepth=boundaryLayerDepth,
                      aspectRatio=aspectRatio,
                      angle=numerix.pi * taperAngle / 180.,
                      bowWidth=0.,
                      overBumpRadius=0.,
                      overBumpWidth=0.)

    narrowBandWidth = numberOfCellsInNarrowBand * cellSize

    from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
    distanceVar = DistanceVariable(name='distance variable',
                                   mesh=mesh,
                                   value=-1,
                                   narrowBandWidth=narrowBandWidth)

    distanceVar.setValue(1, where=mesh.getElectrolyteMask())
    distanceVar.calcDistanceFunction(narrowBandWidth=1e10)

    from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
    catalystVar = SurfactantVariable(name="catalyst variable",
                                     value=catalystCoverage,
                                     distanceVar=distanceVar)

    from fipy.variables.cellVariable import CellVariable
    metalVar = CellVariable(name='metal variable',
                            mesh=mesh,
                            value=metalConcentration)

    exchangeCurrentDensity = currentDensity0 + currentDensity1 * catalystVar.getInterfaceVar(
    )

    currentDensity = metalVar / metalConcentration * exchangeCurrentDensity

    depositionRateVariable = currentDensity * molarVolume / charge / faradaysConstant

    extensionVelocityVariable = CellVariable(name='extension velocity',
                                             mesh=mesh,
                                             value=depositionRateVariable)

    from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
                import AdsorbingSurfactantEquation

    catalystSurfactantEquation = AdsorbingSurfactantEquation(
        catalystVar,
        distanceVar=distanceVar,
        bulkVar=0,
        rateConstant=0,
        consumptionCoeff=consumptionRateConstant * extensionVelocityVariable)

    from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
                   import buildHigherOrderAdvectionEquation

    advectionEquation = buildHigherOrderAdvectionEquation(
        advectionCoeff=extensionVelocityVariable)

    from fipy.boundaryConditions.fixedValue import FixedValue
    from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
                         import buildMetalIonDiffusionEquation

    metalEquation = buildMetalIonDiffusionEquation(
        ionVar=metalVar,
        distanceVar=distanceVar,
        depositionRate=depositionRateVariable,
        diffusionCoeff=metalDiffusion,
        metalIonMolarVolume=molarVolume)

    metalEquationBCs = FixedValue(mesh.getTopFaces(), metalConcentration)

    if displayViewers:

        try:

            from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
            viewers = (MayaviSurfactantViewer(distanceVar,
                                              catalystVar.getInterfaceVar(),
                                              zoomFactor=1e6,
                                              limits={
                                                  'datamax': 1.0,
                                                  'datamin': 0.0
                                              },
                                              smooth=1,
                                              title='catalyst coverage'), )

        except:

            class PlotVariable(CellVariable):
                def __init__(self, var=None, name=''):
                    CellVariable.__init__(self,
                                          mesh=mesh.getFineMesh(),
                                          name=name)
                    self.var = self._requires(var)

                def _calcValue(self):
                    return numerix.array(
                        self.var[:self.mesh.getNumberOfCells()])

            from fipy.viewers import make
            viewers = (make(PlotVariable(var=distanceVar),
                            limits={
                                'datamax': 1e-9,
                                'datamin': -1e-9
                            }),
                       make(PlotVariable(var=catalystVar.getInterfaceVar())))

    else:
        viewers = ()
    levelSetUpdateFrequency = int(0.7 * narrowBandWidth / cellSize /
                                  cflNumber / 2)
    step = 0

    while step < numberOfSteps:

        if step % 10 == 0:
            for viewer in viewers:
                viewer.plot()

        if step % levelSetUpdateFrequency == 0:

            distanceVar.calcDistanceFunction(deleteIslands=True)

        extensionVelocityVariable.setValue(
            numerix.array(depositionRateVariable))
        argmax = numerix.argmax(extensionVelocityVariable)
        dt = cflNumber * cellSize / extensionVelocityVariable[argmax]
        distanceVar.extendVariable(extensionVelocityVariable,
                                   deleteIslands=True)

        distanceVar.updateOld()
        catalystVar.updateOld()
        metalVar.updateOld()

        advectionEquation.solve(distanceVar, dt=dt)
        catalystSurfactantEquation.solve(catalystVar, dt=dt)
        metalEquation.solve(metalVar,
                            boundaryConditions=metalEquationBCs,
                            dt=dt)

        step += 1

    try:
        from fipy.tools import dump
        import os
        import examples.levelSet.electroChem
        data = dump.read(
            os.path.join(examples.levelSet.electroChem.__path__[0],
                         'goldData.gz'))
        n = mesh.getFineMesh().getNumberOfCells()
        print numerix.allclose(catalystVar[:n], data[:n], atol=1.0)
    except:
        return 0
Пример #22
0
from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm

nx = 10
ny = 5
nz = 3

dx = 1.
dy = 1.
dz = 1.

valueBottomTop = 0.
valueLeftRight = 1.

mesh = Grid3D(dx=dx, dy=dy, dz=dz, nx=nx, ny=ny, nz=nz)

var = CellVariable(name="solution variable", mesh=mesh, value=valueBottomTop)

boundaryConditions = (FixedValue(mesh.getFacesLeft(), valueLeftRight),
                      FixedValue(mesh.getFacesRight(), valueLeftRight),
                      FixedValue(mesh.getFacesTop(), valueBottomTop),
                      FixedValue(mesh.getFacesBottom(), valueBottomTop))

#do the 2D problem for comparison

nx = 10
ny = 5

dx = 1.
dy = 1.

mesh2 = Grid2D(dx=dx, dy=dy, nx=nx, ny=ny)
Пример #23
0
    valueLeft = 0.
    valueRight = 1.

    meshList = []
    RMSNonOrthoList = []
    RMSErrorList = []

    for i in range(1, 501):
        meshList = meshList + [
            SkewedGrid2D(dx=1.0, dy=1.0, nx=20, ny=20, rand=(0.001 * i))
        ]

    for mesh in meshList:
        var = CellVariable(name="solution variable",
                           mesh=mesh,
                           value=valueLeft)

        from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm

        ImplicitDiffusionTerm().solve(
            var,
            boundaryConditions=(FixedValue(mesh.getFacesLeft(), valueLeft),
                                FixedValue(mesh.getFacesRight(), valueRight)))

        varArray = numerix.array(var)
        x = mesh.getCellCenters()[:, 0]
        analyticalArray = valueLeft + (valueRight - valueLeft) * x / 20
        errorArray = varArray - analyticalArray
        nonOrthoArray = mesh._getNonOrthogonality()
        RMSError = (numerix.add.reduce(errorArray * errorArray) /
Пример #24
0
## build the mesh

from fipy.meshes.grid1D import Grid1D
dx = L / (nx - 1.5)
mesh = Grid1D(nx=nx, dx=dx)

## build the distance variable

value = mesh.getCellCenters()[:, 0] - 1.499 * dx
##distanceVar = DistanceVariable(mesh = mesh, value = dx * (numerix.arange(nx) - 0.999))
distanceVar = DistanceVariable(mesh=mesh, value=value, hasOld=1)

## Build the bulk diffusion equation

bulkVar = CellVariable(mesh=mesh, value=cinf)

surfactantVar = SurfactantVariable(distanceVar=distanceVar)

bulkEqn = buildSurfactantBulkDiffusionEquation(bulkVar,
                                               distanceVar=distanceVar,
                                               surfactantVar=surfactantVar,
                                               diffusionCoeff=diffusion,
                                               rateConstant=rateConstant *
                                               siteDensity)

bcs = (FixedValue(mesh.getFacesRight(), cinf), )

## Build the surfactant equation

surfEqn = AdsorbingSurfactantEquation(surfactantVar=surfactantVar,
Пример #25
0
valueLeft = 0.
valueRight = 0.
L = 10.
nx = 400
dx = L / nx
cfl = 0.01
velocity = 1.
timeStepDuration = cfl * dx / abs(velocity)
steps = 1000

mesh = Grid1D(dx=dx, nx=nx)

startingArray = numerix.zeros(nx, 'd')
startingArray[50:90] = 1.

var = CellVariable(name="advection variable", mesh=mesh, value=startingArray)

boundaryConditions = (FixedValue(mesh.getFacesLeft(), valueLeft),
                      FixedValue(mesh.getFacesRight(), valueRight))

from fipy.terms.transientTerm import TransientTerm
from fipy.terms.powerLawConvectionTerm import PowerLawConvectionTerm

eq = TransientTerm() - PowerLawConvectionTerm(coeff=(velocity, ))

if __name__ == '__main__':

    viewer = fipy.viewers.make(vars=(var, ))
    viewer.plot()
    raw_input("press key to continue")
    for step in range(steps):
Пример #26
0
velocity = 1.0
dt = cfl * dx / velocity

steps = int(L / 4. / dt / velocity)

from fipy.meshes.grid1D import Grid1D
mesh = Grid1D(dx=dx, nx=nx)

from fipy.meshes.periodicGrid1D import PeriodicGrid1D
periodicMesh = PeriodicGrid1D(dx=dx, nx=nx / 2)

startingArray = numerix.zeros(nx, 'd')
startingArray[2 * nx / 10:3 * nx / 10] = 1.

from fipy.variables.cellVariable import CellVariable
var1 = CellVariable(name="non-periodic", mesh=mesh, value=startingArray)

var2 = CellVariable(name="periodic",
                    mesh=periodicMesh,
                    value=startingArray[:nx / 2])

from fipy.terms.transientTerm import TransientTerm
from fipy.terms.vanLeerConvectionTerm import VanLeerConvectionTerm
eq1 = TransientTerm() - VanLeerConvectionTerm(coeff=(-velocity, ))
eq2 = TransientTerm() - VanLeerConvectionTerm(coeff=(-velocity, ))

if __name__ == '__main__':

    import fipy.viewers
    viewer1 = fipy.viewers.make(vars=var1)
    viewer2 = fipy.viewers.make(vars=var2)
Пример #27
0
 def cellCenters(self):
     from fipy.variables.cellVariable import CellVariable
     return CellVariable(mesh=self, value=self._scaledCellCenters,
                         rank=1)
Пример #28
0
#!/usr/bin/env python
L = 1.0
N = 10
dL = L / N
viscosity = 1.
pressureRelaxation = 0.2
velocityRelaxation = 0.5

sweeps = 10

from fipy.meshes.grid2D import Grid2D
mesh = Grid2D(nx=N, ny=N, dx=dL, dy=dL)

from fipy.variables.cellVariable import CellVariable

u = CellVariable(mesh=mesh, name='X velocity')
v = CellVariable(mesh=mesh, name='Y velocity')

from fipy.variables.vectorFaceVariable import VectorFaceVariable
velocity = VectorFaceVariable(mesh=mesh)

Xhat = (1, 0)
Yhat = (0, 1)
velocity = u.getFaceGrad().dot(Xhat) * Xhat + v.getFaceGrad().dot(Yhat) * Yhat

from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm

diffTerm = ImplicitDiffusionTerm(coeff=viscosity)

from fipy.terms.exponentialConvectionTerm import ExponentialConvectionTerm
Пример #29
0
temperature = 1.
phaseTransientCoeff = 0.1
epsilon = 0.008
s = 0.01
alpha = 0.015
temperature = 1.

dx = L / nx

from fipy.meshes.grid1D import Grid1D

mesh = Grid1D(dx=dx, nx=nx)

from fipy.variables.cellVariable import CellVariable

phase = CellVariable(name='PhaseField', mesh=mesh, value=1.)

from fipy.variables.modularVariable import ModularVariable

theta = ModularVariable(name='Theta', mesh=mesh, value=1.)
theta.setValue(0., where=mesh.getCellCenters()[..., 0] > L / 2.)

from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

mPhiVar = phase - 0.5 + temperature * phase * (1 - phase)
thetaMag = theta.getOld().getGrad().getMag()
implicitSource = mPhiVar * (phase - (mPhiVar < 0))
implicitSource += (2 * s + epsilon**2 * thetaMag) * thetaMag

from fipy.terms.transientTerm import TransientTerm
from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm
Пример #30
0
nx = 10
ny = 10
nz = 10

dx = 1.
dy = 1.
dz = 1.

valueFront = 0.
valueBack = 10.
valueSides = 5.

mesh = Grid3D(dx=dx, dy=dy, dz=dz, nx=nx, ny=ny, nz=nz)

var = CellVariable(name="variable", mesh=mesh, value=valueSides)

##viewer1 = Grid3DPyxViewer(var, zvalue = 1.0)
##viewer3 = Grid3DPyxViewer(var, zvalue = 3.0)
##viewer5 = Grid3DPyxViewer(var, zvalue = 5.0)
##viewer7 = Grid3DPyxViewer(var, zvalue = 7.0)
##viewer9 = Grid3DPyxViewer(var, zvalue = 9.0)

## from fipy import viewers
## viewer = viewers.make(vars = var)

## viewer.plot()

from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm

ImplicitDiffusionTerm().solve(var,