def _qCurveToOne(self, bcp, pt):
     bounds = self.bounds
     bounds = updateBounds(bounds, pt)
     if not pointInRect(bcp, bounds):
         bounds = unionRect(
             bounds, calcQuadraticBounds(self._getCurrentPoint(), bcp, pt))
     self.bounds = bounds
Пример #2
0
	def _qCurveToOne(self, bcp, pt):
		bounds = self.bounds
		bounds = updateBounds(bounds, pt)
		if not pointInRect(bcp, bounds):
			bounds = unionRect(bounds, calcQuadraticBounds(
					self._getCurrentPoint(), bcp, pt))
		self.bounds = bounds
Пример #3
0
	def recalcBounds(self, glyfTable):
		coords, endPts, flags = self.getCoordinates(glyfTable)
		if len(coords) > 0:
			if 0:
				# This branch calculates exact glyph outline bounds
				# analytically, handling cases without on-curve
				# extremas, etc.  However, the glyf table header
				# simply says that the bounds should be min/max x/y
				# "for coordinate data", so I suppose that means no
				# fancy thing here, just get extremas of all coord
				# points (on and off).  As such, this branch is
				# disabled.

				# Collect on-curve points
				onCurveCoords = [coords[j] for j in range(len(coords))
						 if flags[j] & flagOnCurve]
				# Add implicit on-curve points
				start = 0
				for end in endPts:
					last = end
					for j in range(start, end + 1):
						if not ((flags[j] | flags[last]) & flagOnCurve):
							x = (coords[last][0] + coords[j][0]) / 2
							y = (coords[last][1] + coords[j][1]) / 2
							onCurveCoords.append((x,y))
						last = j
					start = end + 1
				# Add bounds for curves without an explicit extrema
				start = 0
				for end in endPts:
					last = end
					for j in range(start, end + 1):
						if not (flags[j] & flagOnCurve):
							next = j + 1 if j < end else start
							bbox = calcBounds([coords[last], coords[next]])
							if not pointInRect(coords[j], bbox):
								# Ouch!
								warnings.warn("Outline has curve with implicit extrema.")
								# Ouch!  Find analytical curve bounds.
								pthis = coords[j]
								plast = coords[last]
								if not (flags[last] & flagOnCurve):
									plast = ((pthis[0]+plast[0])/2, (pthis[1]+plast[1])/2)
								pnext = coords[next]
								if not (flags[next] & flagOnCurve):
									pnext = ((pthis[0]+pnext[0])/2, (pthis[1]+pnext[1])/2)
								bbox = calcQuadraticBounds(plast, pthis, pnext)
								onCurveCoords.append((bbox[0],bbox[1]))
								onCurveCoords.append((bbox[2],bbox[3]))
						last = j
					start = end + 1

				self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(onCurveCoords)
			else:
				self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(coords)
		else:
			self.xMin, self.yMin, self.xMax, self.yMax = (0, 0, 0, 0)
	def recalcBounds(self, glyfTable):
		coords, endPts, flags = self.getCoordinates(glyfTable)
		if len(coords) > 0:
			if 0:
				# This branch calculates exact glyph outline bounds
				# analytically, handling cases without on-curve
				# extremas, etc.  However, the glyf table header
				# simply says that the bounds should be min/max x/y
				# "for coordinate data", so I suppose that means no
				# fancy thing here, just get extremas of all coord
				# points (on and off).  As such, this branch is
				# disabled.

				# Collect on-curve points
				onCurveCoords = [coords[j] for j in range(len(coords))
						 if flags[j] & flagOnCurve]
				# Add implicit on-curve points
				start = 0
				for end in endPts:
					last = end
					for j in range(start, end + 1):
						if not ((flags[j] | flags[last]) & flagOnCurve):
							x = (coords[last][0] + coords[j][0]) / 2
							y = (coords[last][1] + coords[j][1]) / 2
							onCurveCoords.append((x,y))
						last = j
					start = end + 1
				# Add bounds for curves without an explicit extrema
				start = 0
				for end in endPts:
					last = end
					for j in range(start, end + 1):
						if not (flags[j] & flagOnCurve):
							next = j + 1 if j < end else start
							bbox = calcBounds([coords[last], coords[next]])
							if not pointInRect(coords[j], bbox):
								# Ouch!
								warnings.warn("Outline has curve with implicit extrema.")
								# Ouch!  Find analytical curve bounds.
								pthis = coords[j]
								plast = coords[last]
								if not (flags[last] & flagOnCurve):
									plast = ((pthis[0]+plast[0])/2, (pthis[1]+plast[1])/2)
								pnext = coords[next]
								if not (flags[next] & flagOnCurve):
									pnext = ((pthis[0]+pnext[0])/2, (pthis[1]+pnext[1])/2)
								bbox = calcQuadraticBounds(plast, pthis, pnext)
								onCurveCoords.append((bbox[0],bbox[1]))
								onCurveCoords.append((bbox[2],bbox[3]))
						last = j
					start = end + 1

				self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(onCurveCoords)
			else:
				self.xMin, self.yMin, self.xMax, self.yMax = calcIntBounds(coords)
		else:
			self.xMin, self.yMin, self.xMax, self.yMax = (0, 0, 0, 0)
Пример #5
0
def test_calcQuadraticBounds():
    assert calcQuadraticBounds((0, 0), (50, 100),
                               (100, 0)) == (0, 0, 100, 50.0)
    assert calcQuadraticBounds((0, 0), (100, 0),
                               (100, 100)) == (0.0, 0.0, 100, 100)
Пример #6
0
def test_calcQuadraticBounds():
    assert calcQuadraticBounds(
        (0, 0), (50, 100), (100, 0)) == (0, 0, 100, 50.0)
    assert calcQuadraticBounds(
        (0, 0), (100, 0), (100, 100)) == (0.0, 0.0, 100, 100)
Пример #7
0
    arrayTools.calcBounds(
        [pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3])
print time.time() - n

print "pointsInRect\t\t\t",
n = time.time()
for i in range(c):
    arrayTools.pointsInRect(
        [pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3, pt4],
        rect)
print time.time() - n

print "calcQuadraticBounds\t\t",
n = time.time()
for i in range(c):
    bezierTools.calcQuadraticBounds(pt1, pt2, pt3)
print time.time() - n

print "calcCubicBounds\t\t\t",
n = time.time()
for i in range(c):
    bezierTools.calcCubicBounds(pt1, pt2, pt3, pt4)
print time.time() - n

print
##############

print "no-numpy"
print "calcQuadraticParameters\t\t",
n = time.time()
for i in range(c):
Пример #8
0
print "calcBounds\t\t\t",
n = time.time()
for i in range(c):
    arrayTools.calcBounds([pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3])
print time.time() - n

print "pointsInRect\t\t\t",
n = time.time()
for i in range(c):
    arrayTools.pointsInRect([pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3, pt1, pt2, pt3, pt4], rect)
print time.time() - n

print "calcQuadraticBounds\t\t",
n = time.time()
for i in range(c):
    bezierTools.calcQuadraticBounds(pt1, pt2, pt3)
print time.time() - n

print "calcCubicBounds\t\t\t",
n = time.time()
for i in range(c):
    bezierTools.calcCubicBounds(pt1, pt2, pt3, pt4)
print time.time() - n

print 
##############

print "no-numpy"
print "calcQuadraticParameters\t\t",
n = time.time()
for i in range(c):