Пример #1
0
def get_columns_form():
    try:
        class_name = request.args.get("className")
        if class_name == "DatasetSurveyBalance":
            r = API.get_class(class_name)
            arr = str(r.data, "utf-8")
            r_json = json.loads(arr)
            data_create_model = pd.DataFrame(r_json["results"])
            index_columns = data_create_model.columns[3:]
            list_index = list(index_columns)
            array_index_json = json.dumps(list_index)
            return array_index_json
        elif class_name == "DatasetObesity":
            r = API.get_class(class_name)
            arr = str(r.data, "utf-8")
            r_json = json.loads(arr)
            data_create_model = pd.DataFrame(r_json["results"])
            index_columns = data_create_model.columns[3:]
            list_index = list(index_columns)
            array_index_json = json.dumps(list_index)
            return array_index_json

    except:
        print("[Error] (getColumnsFrom function app.py)")
        return "[Error] BAD REQUEST can't det columns form"
Пример #2
0
def load_model():
    try:
        model_id = request.args.get("modelId")
        classModel = request.args.get("classModel")
        if (classModel == "SystemModelVn"):
            r = API.get_class("DatasetSurveyBalance")
            arr = str(r.data, "utf-8")
            r_json = json.loads(arr)
            data = r_json["results"]
            dataFrame = pd.DataFrame(data)
            dataFrame = dataFrame.iloc[:, 3:]
            dataFrame.drop('obesity', inplace=True, axis=1)
        new_record = request.args.get("record")
        new_record = new_record.split(",")
        df_new_record = pd.DataFrame([new_record])
        df_new_record.columns = dataFrame.columns
        for i in range(len(df_new_record)):
            for feature in list(df_new_record.columns):
                if df_new_record[feature][i] == "":
                    df_new_record[feature][i] = list(
                        dataFrame[feature].value_counts().index)[list(
                            dataFrame[feature].value_counts()).index(
                                min(dataFrame[feature].value_counts()))]
        if model_id == None:
            return "[error] modelId not found check (keys) modelId and values"
        else:
            r = API.get_model(classModel, model_id)
            modelUrl = r["modelFile"]["url"]
            Nu_SVC_classifier = joblib.load(urlopen(modelUrl))
            data_transform = {
                "0": "Thiếu cân (Insufficient weight)",
                "1": "Bình thường (Normal weight)",
                "2": "Thừa cân loại 1 (Overweight level 1)",
                "3": "Thừa cân loại 2 (Overweight level 2)",
                "4": "Béo phì loại 1 (Obesity type I)",
                "5": "Béo phì loại 2 (Obesity type II)",
                "6": "Béo phì loại 3 (Obesity type III)",
            }
            KQ = np.array(Nu_SVC_classifier.predict(df_new_record))
            dataReturn = {
                "dataPredict": [],
            }
            for rs in KQ:
                dataReturn["dataPredict"].append(data_transform[str(rs)])
            return dataReturn
    except:
        print("[error] check key (inputColumns) and value")
        return "[error] check key (inputColumns) and value (check type inputColumns)"
        pass
Пример #3
0
def get_system_model():
    try:
        r_mx = API.get_class("SystemModelMx")
        arr_mx = str(r_mx.data, "utf-8")
        r_json_mx = json.loads(arr_mx)
        model_mx_id = r_json_mx['results'][len(r_json_mx)]['objectId']
        r_vn = API.get_class("SystemModelVn")
        arr_vn = str(r_vn.data, "utf-8")
        r_json_vn = json.loads(arr_vn)
        model_vn_id = r_json_vn['results'][len(r_json_vn)]['objectId']
        model_system = {"modelVn": model_vn_id, "modelMx": model_mx_id}
        return model_system
    except:
        print("[error] (createModel function app.py)")
        data = {"error": "can't create model"}
        return data
Пример #4
0
def download_dataset():
    try:
        # Get opjectId, collabel, feature, algorithm and parameters
        data_id = request.args.get("dataId")
        class_name = request.args.get("className")
        r = API.get_data_create_model(class_name, data_id)
        file_name = str(uuid.uuid4())[:8] + "_data.csv"
        data_json = json.loads(r["jsonData"])
        dataFrame = pd.DataFrame(data_json)
        dataFrame = DATA.check_columns_name(dataFrame)
        if os.path.exists(app.config["DOWNLOAD_FOLDER"]):
            file_path_download = os.path.join(app.config["DOWNLOAD_FOLDER"],
                                              file_name)
        else:
            os.makedirs(app.config["DOWNLOAD_FOLDER"])
            file_path_download = os.path.join(app.config["DOWNLOAD_FOLDER"],
                                              file_name)
        # file_path = "./temp/" + file_name
        # file_path_download = "./temp/" + file_name
        export_csv = dataFrame.to_csv(file_path_download,
                                      index=None,
                                      header=True)
        return send_file(
            file_path_download,
            mimetype="test/csv",
            attachment_filename="data.csv",
            as_attachment=True,
        )
    except Exception as ex:
        print("[error] (createModel function app.py)")
        data = {"error": "can't  download data"}
        print(ex)
        return data
Пример #5
0
def get_algorithm():
    try:
        class_name = request.args.get("className")
        r = API.get_class(class_name)
        return r.data
    except:
        print("[Error] (getAlgorithm function app.py)")
        return "[Error] BAD REQUEST can't get algorithm"
Пример #6
0
def get_params():
    try:
        className = request.args.get("className")
        r = API.get_class(className)
        return r
    except:
        print("[Error] (getParams function app.py)")
        return "[Error] BAD REQUEST can't get params"
Пример #7
0
def get_datasets():
    try:
        class_name = request.args.get("className")
        # class_name = "Dataset"
        r = API.get_class(class_name)
        return r.data
    except:
        print("[Error] (getDataModels function app.py)")
        return "[Error] BAD REQUEST can't get datamodel"
Пример #8
0
def new_record_survey():
    try:
        new_record = request.args.get("record")
        new_record = new_record.split(",")
        class_name = request.args.get("className")
        df_new_record = pd.DataFrame([new_record])
        df_new_record.columns = [
            "meal_of_the_day", "nicotine", "sleep_time", "require_of_job",
            "park", "time_use_tech_equip", "depression",
            "breakfast_of_the_week", "protein_of_meal", "water_of_the_day",
            "vegetable_in_meal", "time_do_exercise", "alcohol",
            "time_of_sport", "fast_food_of_the_week", "dinner_of_the_week",
            "obesity"
        ]
        for i in range(len(df_new_record)):
            data_post = {
                "mealOfTheDay":
                int(df_new_record["meal_of_the_day"][i]),
                "breakfastOfTheWeek":
                float(df_new_record["breakfast_of_the_week"][i]),
                "dinnerOfTheWeek":
                float(df_new_record["dinner_of_the_week"][i]),
                "fastFoodOfTheWeek":
                float(df_new_record["fast_food_of_the_week"][i]),
                "vegetableInMeal":
                float(df_new_record["vegetable_in_meal"][i]),
                "waterOfTheDay":
                float(df_new_record["water_of_the_day"][i]),
                "proteinOfMeal":
                float(df_new_record["protein_of_meal"][i]),
                "timeDoExcerciseForWeek":
                float(df_new_record["time_do_exercise"][i]),
                "sportTimeForWeek":
                float(df_new_record["time_of_sport"][i]),
                "alcohol":
                float(df_new_record["alcohol"][i]),
                "nicotine":
                float(df_new_record["nicotine"][i]),
                "timeSleep":
                float(df_new_record["sleep_time"][i]),
                "requireOfJob":
                float(df_new_record["require_of_job"][i]),
                "park":
                float(df_new_record["park"][i]),
                "timeUseTechEquip":
                float(df_new_record["time_use_tech_equip"][i]),
                "depression":
                float(df_new_record["depression"][i]),
                "obesity":
                int(df_new_record["obesity"][i]),
            }
            data = API.post(class_name, data_post)
            return str("ok")
    except:
        print("[error] check key (inputColumns) and value")
        return "[error] check key (inputColumns) and value (check type inputColumns)"
        pass
Пример #9
0
def check_data_delete():
    try:
        className = request.args.get("className")
        object_id_delete = request.args.get("dataId")
        r = API.check_data(className, object_id_delete)
        return r
    except:
        print("[Error] (getAlgorithm function app.py)")
        return "[Error] BAD REQUEST can't get algorithm"
Пример #10
0
def linking_users():
    try:
        login_info_auth = {"username": "******", "password": "******"}
        login_user_info = API.user_login(login_info_auth)
        login_user_info.sessiontoken
        return str(login_user_info)
    except:
        print("[Error] (Linking_Users function app.py)")
        return "[Error] BAD REQUEST can't Linking_Users"
Пример #11
0
def get_data_models():
    try:
        user_id = request.args.get("userId")
        class_name = "Model"
        r = API.get_model_user(class_name)
        return r
    except:
        print("[Error] (getDataModels function app.py)")
        return "[Error] BAD REQUEST can't get datamodel"
Пример #12
0
def delete_data():
    try:
        object_id = request.args.get("oId")
        class_id = "Data"
        data = API.delete_data(class_id, object_id)
        return data
    except:
        print("[Error] (delete function app.py)")
        return "[Error] BAD REQUEST can't delete dataset"
Пример #13
0
def delete_data_model():
    try:
        object_id = request.args.getlist("oId")[0]
        className = request.args.getlist("class")[0]
        class_id = className
        data = API.delete_object(class_id, object_id)
        return data
    except:
        print("[Error] (deleteDataModel function app.py)")
        return "[Error] BAD REQUEST can't delete model"
Пример #14
0
def get_data():
    try:
        userId = request.args.get("userId")
        className = "Data"
        r = API.get_data_user("Data", userId)
        data = r.data
        return r.data
    except:
        print("[Error] (getData function app.py)")
        return "[Error] BAD REQUEST can't get data"
Пример #15
0
def get_model_detail():
    try:
        modelId = request.args.get("modelId")
        r = API.get_model_detail("ModelDetail", modelId)
        if r == False:
            data = {
                "error":
                "[error] request fail, model " + str(modelId) + " not found"
            }
            return data
        else:
            data = r["results"][0]
            return data
    except:
        print("[Error] (useModel function app.py)")
        return "[Error] BAD REQUEST can't get model detail"
Пример #16
0
def upload_dataset():
    try:
        dataset = pd.read_csv("./data_api/data_preprocessing_2.csv")
        print(dataset)
        for i in range(len(dataset)):
            data_post = {
                "name": dataset["name"][i],
                "gender": str(dataset["gender"][i]),
                "yearOfBirth": int(dataset["year_of_birth"][i]),
                "job": dataset["job"][i],
                "height": float(dataset["height"][i]),
                "weight": int(dataset["weight"][i]),
                "mealOfTheDay": int(dataset["meal_of_the_day"][i]),
                "breakfastOfTheWeek": dataset["breakfast_of_the_week"][i],
                "dinnerOfTheWeek": dataset["dinner_of_the_week"][i],
                "fastFoodOfTheWeek": dataset["fast_food_of_the_week"][i],
                "vegetableInMeal": dataset["vegetable_in_meal"][i],
                "sourceOfFood": dataset["source_of_food"][i],
                "waterOfTheDay": dataset["water_of_the_day"][i],
                "proteinOfMeal": dataset["protein_of_meal"][i],
                "timeDoExcerciseForWeel": dataset["time_do_exercise"][i],
                "sportTimeForWeek": dataset["time_of_sport"][i],
                "alcohol": dataset["alcohol"][i],
                "sodaWater": dataset["soda_water"][i],
                "nicotine": dataset["nicotine"][i],
                "timeSleep": str(dataset["sleep_time"][i]),
                "chronicDiseases": dataset["chronic_diseases"][i],
                "chronicDiseasesMedicine":
                dataset["chronic_diseases_medicine"][i],
                "chronicDiseasesRelative":
                dataset["chronic_diseases_relatives"][i],
                "requireOfJob": str(dataset["require_of_job"][i]),
                "income": str(dataset["income"][i]),
                "transport": dataset["transport"][i],
                "park": dataset["park"][i],
                "timeUseTechEquip": str(dataset["time_use_tech_equip"][i]),
                "sedative": dataset["sedative"][i],
                "depression": dataset["depression"][i],
                "age": str(dataset["age"][i]),
            }
            class_name = "Dataset"
            data = API.post(class_name, data_post)
        return data
    except UnboundLocalError:
        print("[error] ")
        return "fail, can't upload dataset"
Пример #17
0
def register():
    try:
        userName = request.args.get("userName")
        password = request.args.get("password")
        email = request.args.get("email")
        data_info = {
            "username": userName,
            "password": password,
            "email": email
        }
        signing_info = API.signing_up(data_info)
        # object_id = signing_info['objectId']
        # time = signing_info['CreatedAt']
        # session_token = signing_info['sessionToken']
        return signing_info
    except:
        print("[Error] (Register function app.py)")
        return "[Error] BAD REQUEST can't Register"
Пример #18
0
def get_data_charts():
    try:
        class_name = request.args.get("className")
        r = API.get_class(class_name)
        arr = str(r.data, "utf-8")
        r_json = json.loads(arr)
        data = r_json["results"]
        df = pd.DataFrame(data)
        data_mealOfTheDay = DATA.get_data_chart(df, "mealOfTheDay")
        data_breakfastOfTheWeek = DATA.get_data_chart(df, "breakfastOfTheWeek")
        data_dinnerOfTheWeek = DATA.get_data_chart(df, "dinnerOfTheWeek")
        data_fastfoodOfTheWeek = DATA.get_data_chart(df, "fastFoodOfTheWeek")
        data_vegetableInMeal = DATA.get_data_chart(df, "vegetableInMeal")
        data_proteinOfMeal = DATA.get_data_chart(df, "proteinOfMeal")
        data_waterOfTheDay = DATA.get_data_chart(df, "waterOfTheDay")
        data_timeDoExcerciseForWeek = DATA.get_data_chart(
            df, "timeDoExcerciseForWeek")
        data_sportTimeForWeek = DATA.get_data_chart(df, "sportTimeForWeek")
        data_alcohol = DATA.get_data_chart(df, "alcohol")
        data_nicotine = DATA.get_data_chart(df, "nicotine")
        data_requireOfJob = DATA.get_data_chart(df, "requireOfJob")
        data_park = DATA.get_data_chart(df, "park")
        data_depression = DATA.get_data_chart(df, "depression")
        data_result = {
            "chart_meal_of_theday": data_mealOfTheDay,
            "chart_breakfast_of_theweek": data_breakfastOfTheWeek,
            "chart_dinner_of_theweek": data_dinnerOfTheWeek,
            "chart_fastfood_of_theweek": data_fastfoodOfTheWeek,
            "chart_vegetable_in_meal": data_vegetableInMeal,
            "chart_protein_of_meal": data_proteinOfMeal,
            "chart_water_of_the_day": data_waterOfTheDay,
            "chart_time_doexcercise_for_week": data_timeDoExcerciseForWeek,
            "chart_sporttime_for_week": data_sportTimeForWeek,
            "chart_alcohol": data_alcohol,
            "chart_nicotine": data_nicotine,
            "chart_requireOfJob": data_requireOfJob,
            "chart_park": data_park,
            "chart_depression": data_depression,
        }
        # data_result = json.dumps(data_result)
        return data_result
    except:
        print("[Error] (getDataModels function app.py)")
        return "[Error] BAD REQUEST can't get datamodel"
Пример #19
0
from sklearn.decomposition import PCA
import pandas as pd
from function_api import API

dataset = pd.read_csv("./data/data_fit.csv")
# dataset = pd.read_csv("./data/data_end_no_encode.csv")
# dataset_p["BMI"] = dataset["weight"] / (dataset["height"] * dataset["height"])

for i in range(len(dataset)):
    data_post = {
        "mealOfTheDay": int(dataset["meal_of_the_day"][i]),
        "breakfastOfTheWeek": float(dataset["breakfast_of_the_week"][i]),
        "dinnerOfTheWeek": float(dataset["dinner_of_the_week"][i]),
        "fastFoodOfTheWeek": float(dataset["fast_food_of_the_week"][i]),
        "vegetableInMeal": float(dataset["vegetable_in_meal"][i]),
        "waterOfTheDay": float(dataset["water_of_the_day"][i]),
        "proteinOfMeal": float(dataset["protein_of_meal"][i]),
        "timeDoExcerciseForWeek": float(dataset["time_do_exercise"][i]),
        "sportTimeForWeek": float(dataset["time_of_sport"][i]),
        "alcohol": float(dataset["alcohol"][i]),
        "nicotine": float(dataset["nicotine"][i]),
        "timeSleep": float(dataset["sleep_time"][i]),
        "requireOfJob": float(dataset["require_of_job"][i]),
        "park": float(dataset["park"][i]),
        "timeUseTechEquip": float(dataset["time_use_tech_equip"][i]),
        "depression": float(dataset["depression"][i]),
        "obesity": int(dataset["obesity"][i]),
    }
    class_name = "DatasetSurveyBalance"
    data = API.post(class_name, data_post)
Пример #20
0
def create_api_model():
    # try:
    if request.headers["CONTENT_TYPE"] == "application/json":
        try:
            data_request = request.json
            modelId = data_request["modelId"]
            if modelId == None:
                return "[error] modelId not found check (keys) modelId and values "
            else:
                data_test_json = data_request["data"]
                data_test_dataFrame = pd.DataFrame(data_test_json)
                r = API.get_model("Model", modelId)
                modelUrl = r["modelFile"]["url"]
                Nu_SVC_classifier = joblib.load(urlopen(modelUrl))
                KQ = np.array(Nu_SVC_classifier.predict(data_test_dataFrame))
                data_transform = {
                    "0": "Thiếu cân (Insufficient weight)",
                    "1": "Bình thường (Normal weight)",
                    "2": "Thừa cân loại 1 (Overweight level 1)",
                    "3": "Thừa cân loại 2 (Overweight level 2)",
                    "4": "Béo phì loại 1 (Obesity type I)",
                    "5": "git Béo phì loại 2 (Obesity type II)",
                    "6": "Béo phì loại 3 (Obesity type III)",
                }
                dataReturn = {
                    "result": [],
                }
                for rs in KQ:
                    dataReturn["result"].append(data_transform[str(rs)])
                return dataReturn
        except:
            print("[error] check key (inputColumns) and value")
            return (
                "[error] check key (inputColumns) and value (check type inputColumns)"
            )
            pass
    else:
        modelId = request.form.get("modelId")
        if modelId == None:
            return "[error] modelId not found check (keys) modelId and values "
        else:
            file_test = request.files.getlist("data")[0]
            file_name = secure_filename(file_test.filename)
            if file_name == "":
                return "[error] Can't find data, check keys 'data' and values"
            else:
                try:
                    filename_random = str(uuid.uuid4())[:8] + "_" + file_name
                    if os.path.exists(app.config["DATA_API_FOLDER"]):
                        file_path_test = os.path.join(
                            app.config["DATA_API_FOLDER"], filename_random)
                    else:
                        os.makedirs(app.config["DATA_API_FOLDER"])
                        file_path_test = os.path.join(
                            app.config["DATA_API_FOLDER"], filename_random)
                    file_test.save(file_path_test)
                    df_test, columns, n, m = DATA.read("csv", file_path_test,
                                                       ",")
                except Exception as e:
                    print(e)
                    return "[error] can't save data, request fail"
                    pass
                try:
                    col_feature_test_string = request.form.getlist(
                        "inputColumns")[0]
                    col_feature_test_list = ast.literal_eval(
                        col_feature_test_string)
                    col_feature_test_array = np.array(col_feature_test_list)
                    r = API.get_model("Model", modelId)
                    modelUrl = r["modelFile"]["url"]
                    Nu_SVC_classifier = joblib.load(urlopen(modelUrl))
                except:
                    print("[error] request fail")
                    notification = (
                        "[error] request fail check key 'modelId', model " +
                        str(modelId) + " not found")
                    return notification
                    pass
                try:
                    data_test = df_test.iloc[:, col_feature_test_array]
                    KQ = np.array(Nu_SVC_classifier.predict(data_test))
                    data_transform = {
                        "0": "Thiếu cân (Insufficient weight)",
                        "1": "Bình thường (Normal weight)",
                        "2": "Thừa cân loại 1 (Overweight level 1)",
                        "3": "Thừa cân loại 2 (Overweight level 2)",
                        "4": "Béo phì loại 1 (Obesity type I)",
                        "5": "Béo phì loại 2 (Obesity type II)",
                        "6": "Béo phì loại 3 (Obesity type III)",
                    }
                    dataReturn = {
                        "result": [],
                    }
                    for rs in KQ:
                        dataReturn["result"].append(data_transform[str(rs)])
                    os.remove(file_path_test)
                    return dataReturn
                except IndexError:
                    print("[error] check key (inputColumns) and value")
                    return "[error] check key (inputColumns) and value check (number inputColumns)"
                    pass
                except ValueError:
                    print("[error] check key (inputColumns) and value")
                    return "[error] check key (inputColumns) and value (check type inputColumns)"
                    pass
Пример #21
0
def create_model():
    try:
        # Get opjectId, collabel, feature, algorithm and parameters
        data_name = request.args.get("dataName")
        class_name = request.args.get("className")
        model_name = request.args.get("modelname")
        col_label = int(request.args.get("label"))
        col_feature_str = (request.args.get("feature")).split(",")
        col_feature = []
        for col in col_feature_str:
            col_feature.append(int(col))
        athm = request.args.get("algorithm")
        athm_id = request.args.get("algorithmId")
        params = json.loads(request.args.get("params"))
        # print(params)
        if params == {}:
            params = None
            test_size = 0.3
        else:
            test_size = float(params["testSize"])
            if test_size >= 1.0 or test_size <= 0.0:
                data = {"error": "0.0 < test size < 1.0"}
                return data
        # get data
        r = API.get_class(class_name)
        arr = str(r.data, "utf-8")
        r_json = json.loads(arr)
        data = r_json["results"]
        dataFrame = pd.DataFrame(data)
        if class_name == "DatasetSurveyBalance":
            dataFrame = dataFrame.iloc[:, 3:]
        elif class_name == "DatasetObesity":
            dataFrame = dataFrame.iloc[:, 3:]
        if "yearOfBirth" in list(dataFrame.columns):
            del dataFrame["yearOfBirth"]
        # dataFrame = dataFrame.dropna(axis="1",how = "any")
        col_feature_name = np.array((dataFrame.iloc[:, col_feature]).columns)
        col_feature_name_str = col_feature_name[0]
        col_feature_name = list(col_feature_name)
        col_feature_name.pop(0)
        col_feature_name = np.array(col_feature_name)
        for col in col_feature_name:
            col_feature_name_str = col_feature_name_str + "," + col
        col_label_name = str(
            np.array(
                pd.DataFrame(np.matrix(dataFrame.columns)).iloc[0, col_label]))
        # get data train, test
        X_train, X_test, y_train, y_test = DATA.get_data_train(
            dataFrame, col_feature, col_label, test_size)
        model, evalution, error, params = get_athm(athm, X_train, X_test,
                                                   y_train, y_test, params)
        if error != "":
            data = {"error": error}
            return data
        else:
            #   Create random id for file name
            folder_model = "./upload_model"
            randomId = str(uuid.uuid4())[:8]
            file_name_model = (randomId + "_" + str(athm) + "_" +
                               str(class_name) + str(".pkl"))
            pkl_filename = folder_model + "/" + file_name_model
            joblib.dump(model, str(file_name_model))
            custom_header = {}
            custom_header[
                "X-Parse-Application-Id"] = API.X_Parse_Application_Id
            custom_header["X-Parse-REST-API-Key"] = API.X_Parse_REST_API_Key
            custom_header["Content-Type"] = "application/x-binary"
            desription = description = (
                "Model " + " use " + str(athm) + " algorithm " + ". " +
                "Dataset for model is " + str(data_name) +
                ", columns label is " + str(col_label_name) +
                " and columns feature is " + str(col_feature_name))
            r_upload = API.upload_model_file(
                file_name_model,
                model_name,
                data_name,
                athm_id,
                params,
                col_label,
                col_label_name,
                col_feature,
                col_feature_name_str,
                description,
                evalution,
            )
            return r_upload
    except:
        print("[error] (createModel function app.py)")
        data = {"error": "can't create model"}
        return data
Пример #22
0
def create_model_system_mx():
    try:
        # Get opjectId, collabel, feature, algorithm and parameters
        data_name = 'DatasetMX'
        class_name = 'DatasetObesity'
        model_name = "MODEL SYSTEM"
        col_label = 7
        col_feature_str = [
            '0', '1', '2', '3', '4', '5', '6', '8', '9', '10', '11', '12',
            '13', '14', '15', '16'
        ]
        col_feature = []
        for col in col_feature_str:
            col_feature.append(int(col))
        athm = 'SupportVectorMachine'
        athm_id = 'ccn7ofeacm'
        params = {
            'C': '100000',
            'degree': '3',
            'gamma': '0.3',
            'kernel': 'linear',
            'testSize': '0.3'
        }
        if params == {}:
            params = None
            test_size = 0.3
        else:
            test_size = float(params["testSize"])
            if test_size >= 1.0 or test_size <= 0.0:
                data = {"error": "0.0 < test size < 1.0"}
                return data
        # get data
        r = API.get_class(class_name)
        arr = str(r.data, "utf-8")
        r_json = json.loads(arr)
        data = r_json["results"]
        dataFrame = pd.DataFrame(data)
        if class_name == "DatasetSurveyBalance":
            dataFrame = dataFrame.iloc[:, 3:]
        elif class_name == "DatasetObesity":
            dataFrame = dataFrame.iloc[:, 3:]
        if "yearOfBirth" in list(dataFrame.columns):
            del dataFrame["yearOfBirth"]
        # dataFrame = dataFrame.dropna(axis="1",how = "any")
        col_feature_name = np.array((dataFrame.iloc[:, col_feature]).columns)
        col_feature_name_str = col_feature_name[0]
        col_feature_name = list(col_feature_name)
        col_feature_name.pop(0)
        col_feature_name = np.array(col_feature_name)
        for col in col_feature_name:
            col_feature_name_str = col_feature_name_str + "," + col
        col_label_name = str(
            np.array(
                pd.DataFrame(np.matrix(dataFrame.columns)).iloc[0, col_label]))
        # get data train, test
        X_train, X_test, y_train, y_test = DATA.get_data_train(
            dataFrame, col_feature, col_label, test_size)
        model, evalution, error, params = get_athm(athm, X_train, X_test,
                                                   y_train, y_test, params)
        if error != "":
            data = {"error": error}
            return data
        else:
            #   Create random id for file name
            folder_model = "./upload_model"
            randomId = str(uuid.uuid4())[:8]
            file_name_model = (randomId + "_" + str(athm) + "_" +
                               str(class_name) + str(".pkl"))
            pkl_filename = folder_model + "/" + file_name_model
            joblib.dump(model, str(file_name_model))
            custom_header = {}
            custom_header[
                "X-Parse-Application-Id"] = API.X_Parse_Application_Id
            custom_header["X-Parse-REST-API-Key"] = API.X_Parse_REST_API_Key
            custom_header["Content-Type"] = "application/x-binary"
            desription = description = (
                "Model " + " use " + str(athm) + " algorithm " + ". " +
                "Dataset for model is " + str(data_name) +
                ", columns label is " + str(col_label_name) +
                " and columns feature is " + str(col_feature_name))
            r_upload_2 = API.upload_model_file_system_mx(
                file_name_model,
                model_name,
                data_name,
                athm_id,
                params,
                col_label,
                col_label_name,
                col_feature,
                col_feature_name_str,
                description,
                evalution,
            )
            return r_upload_2
    except:
        print("[error] (createModel function app.py)")
        data = {"error": "can't create model"}
        return data
Пример #23
0
def get_data_charts_obesity():
    try:
        class_name = request.args.get("className")
        # class_name = "Dataset"
        r = API.get_class(class_name)
        arr = str(r.data, "utf-8")
        r_json = json.loads(arr)
        data = r_json["results"]
        df = pd.DataFrame(data)
        columns = list(df.columns)[4:]
        columns.remove("weight")
        for i in range(len(df)):
            for column in list(columns):
                try:
                    df[column][i] = int(round(df[column][i]))
                except:
                    df[column][i] = str(df[column][i])
        data_FAVC = DATA.get_data_chart(df, "FAVC")
        data_gender = DATA.get_data_chart(df, "gender")
        data_NCP = DATA.get_data_chart(df, "NCP")
        data_FHWO = DATA.get_data_chart(df, "FHWO")
        data_CAEC = DATA.get_data_chart(df, "CAEC")
        data_CH2O = DATA.get_data_chart(df, "CH2O")
        data_SMOKE = DATA.get_data_chart(df, "SMOKE")
        data_FCVC = DATA.get_data_chart(df, "FCVC")
        data_SCC = DATA.get_data_chart(df, "SCC")
        data_FAF = DATA.get_data_chart(df, "FAF")
        data_TUE = DATA.get_data_chart(df, "TUE")
        data_CALC = DATA.get_data_chart(df, "CALC")
        data_MTRANS = DATA.get_data_chart(df, "MTRANS")
        data_NObeyesdad = DATA.get_data_chart(df, "NObeyesdad")
        df1 = df.sort_values(by=["weight"],
                             ascending=True).reset_index(drop=True)
        weight_values = {
            "duoi_40": [],
            "duoi_50": [],
            "duoi_60": [],
            "duoi_70": [],
            "duoi_80": [],
            "duoi_90": [],
            "duoi_100": [],
            "tren_100": [],
        }
        for i in range(len(df1)):
            if float(df1["weight"][i]) < 40:
                weight_values["duoi_40"].append(float(df1["height"][i]))
            elif (float(df1["weight"][i]) >= 40) and (float(df1["weight"][i]) <
                                                      50):
                weight_values["duoi_50"].append(float(df1["height"][i]))
            elif (float(df1["weight"][i]) >= 50) and (float(df1["weight"][i]) <
                                                      60):
                weight_values["duoi_60"].append(float(df1["height"][i]))
            elif (float(df1["weight"][i]) >= 60) and (float(df1["weight"][i]) <
                                                      70):
                weight_values["duoi_70"].append(float(df1["height"][i]))
            elif (float(df1["weight"][i]) >= 70) and (float(df1["weight"][i]) <
                                                      80):
                weight_values["duoi_80"].append(float(df1["height"][i]))
            elif (float(df1["weight"][i]) >= 80) and (float(df1["weight"][i]) <
                                                      90):
                weight_values["duoi_90"].append(float(df1["height"][i]))
            elif (float(df1["weight"][i]) >= 90) and (float(df1["weight"][i]) <
                                                      100):
                weight_values["duoi_100"].append(float(df1["height"][i]))
            elif float(df1["weight"][i]) >= 100:
                weight_values["tren_100"].append(float(df1["height"][i]))
        data_height_weight = [
            {
                "name": "Ít hơn 40 kg",
                "value": DATA.trung_binh(weight_values["duoi_40"]),
            },
            {
                "name": "Từ 40 - 50 kg",
                "value": DATA.trung_binh(weight_values["duoi_50"]),
            },
            {
                "name": "Từ 50 - 60 kg",
                "value": DATA.trung_binh(weight_values["duoi_60"]),
            },
            {
                "name": "Từ 60 - 70 kg",
                "value": DATA.trung_binh(weight_values["duoi_70"]),
            },
            {
                "name": "Từ 70 - 80 kg",
                "value": DATA.trung_binh(weight_values["duoi_80"]),
            },
            {
                "name": "Từ 80 - 90 kg",
                "value": DATA.trung_binh(weight_values["duoi_90"]),
            },
            {
                "name": "Từ 90 - 100 kg",
                "value": DATA.trung_binh(weight_values["duoi_100"]),
            },
            {
                "name": "Trên 100 kg",
                "value": DATA.trung_binh(weight_values["tren_100"]),
            },
        ]
        data_age = [
            {
                "name": "Dưới 20 tuổi",
                "value": 0
            },
            {
                "name": "Từ 20 - dưới 30 tuổi",
                "value": 0
            },
            {
                "name": "Từ 30 - dưới 40 tuổi",
                "value": 0
            },
            {
                "name": "Từ 40 - dưới 50 tuổi",
                "value": 0
            },
            {
                "name": "Từ 50 - dưới 60 tuổi",
                "value": 0
            },
            {
                "name": "Từ 60 trở lên",
                "value": 0
            },
        ]
        data_result = {
            "chart_gender": data_gender,
            "chart_FAVC": data_FAVC,
            "chart_NCP": data_NCP,
            "chart_FHWO": data_FHWO,
            "chart_CAEC": data_CAEC,
            "chart_CH2O": data_CH2O,
            "chart_SMOKE": data_SMOKE,
            "chart_FCVC": data_FCVC,
            "chart_SCC": data_SCC,
            "chart_FAF": data_FAF,
            "chart_TUE": data_TUE,
            "chart_CALC": data_CALC,
            "chart_MTRANS": data_MTRANS,
            "chart_age": data_age,
            "chart_obesity": data_NObeyesdad,
        }
        # data_result = json.dumps(data_result)
        return data_result
    except:
        print("[Error] (getDataModels function app.py)")
        return "[Error] BAD REQUEST can't get datamodel"
Пример #24
0
def add_record_obesity():
    try:
        new_record = request.args.get("record")
        new_record = new_record.split(",")
        class_name = request.args.get("className")
        class_name_raw = request.args.get("classNameRaw")
        data_tf_obesity = {
            "0": "Insufficient_Weight",
            "1": "Normal_Weight",
            "2": "Overweight_Level_I",
            "3": "Overweight_Level_II",
            "4": "Obesity_Type_I",
            "5": "Obesity_Type_II",
            "6": "Obesity_Type_III",
        }
        data_tf_gender = {"0": "Female", "1": "Male"}
        data_tf_FHWO = {"0": "no", "1": "yes"}
        data_tf_FAVC = {"0": "no", "1": "yes"}
        data_tf_CAEC = {
            "0": "no",
            "1": "Sometimes",
            "2": "Frequently",
            "3": "Always"
        }
        data_tf_CALC = {
            "0": "no",
            "1": "Sometimes",
            "2": "Frequently",
            "3": "Always"
        }
        data_tf_SMOKE = {"0": "no", "1": "yes"}
        data_tf_SCC = {"0": "no", "1": "yes"}
        data_tf_MTRANS = {
            "0": "Public_Transportation",
            "1": "Automobile",
            "2": "Walking",
            "3": "Motorbike",
            "4": "Bike",
        }
        df_new_record = pd.DataFrame([new_record])
        df_new_record.columns = [
            "GENDER",
            "HEIGHT",
            "FAVC",
            "AGE",
            "NCP",
            "FHWO",
            "CAEC",
            "CH2O",
            "SMOKE",
            "FCVC",
            "SCC",
            "FAF",
            "TUE",
            "CALC",
            "MTRANS",
            "WEIGHT",
            "CLASS_OB",
        ]
        for i in range(len(df_new_record)):
            data_post_raw = {
                "gender":
                str(data_tf_gender[str(df_new_record["GENDER"][i])]),
                "age":
                float(df_new_record["AGE"][i]),
                "height":
                float(df_new_record["HEIGHT"][i]),
                "weight":
                float(df_new_record["WEIGHT"][i]),
                "FHWO":
                str(data_tf_FHWO[str(df_new_record["FHWO"][i])]),
                "FAVC":
                str(data_tf_FAVC[str(df_new_record["FAVC"][i])]),
                "FCVC":
                float(df_new_record["FCVC"][i]),
                "NCP":
                float(df_new_record["NCP"][i]),
                "CAEC":
                str(data_tf_CAEC[str(df_new_record["CAEC"][i])]),
                "SMOKE":
                str(data_tf_SMOKE[str(df_new_record["SMOKE"][i])]),
                "CH2O":
                float(df_new_record["CH2O"][i]),
                "SCC":
                str(data_tf_SCC[str(df_new_record["SCC"][i])]),
                "FAF":
                float(df_new_record["FAF"][i]),
                "TUE":
                float(df_new_record["TUE"][i]),
                "CALC":
                str(data_tf_CALC[str(df_new_record["CALC"][i])]),
                "MTRANS":
                str(data_tf_MTRANS[str(df_new_record["MTRANS"][i])]),
                "NObeyesdad":
                str(data_tf_obesity[str(df_new_record["CLASS_OB"][i])]),
            }
            data_post = {
                "gender": float(df_new_record["GENDER"][i]),
                "age": float(df_new_record["AGE"][i]),
                "height": float(df_new_record["HEIGHT"][i]),
                "weight": float(df_new_record["WEIGHT"][i]),
                "FHWO": float(df_new_record["FHWO"][i]),
                "FAVC": float(df_new_record["FAVC"][i]),
                "FCVC": float(df_new_record["FCVC"][i]),
                "NCP": float(df_new_record["NCP"][i]),
                "CAEC": float(df_new_record["CAEC"][i]),
                "SMOKE": float(df_new_record["SMOKE"][i]),
                "CH2O": float(df_new_record["CH2O"][i]),
                "SCC": float(df_new_record["SCC"][i]),
                "FAF": float(df_new_record["FAF"][i]),
                "TUE": float(df_new_record["TUE"][i]),
                "CALC": float(df_new_record["CALC"][i]),
                "MTRANS": float(df_new_record["MTRANS"][i]),
                "NObeyesdad": float(df_new_record["CLASS_OB"][i]),
            }
            data_raw = API.post(class_name_raw, data_post_raw)
            data = API.post(class_name, data_post)
            return str(postok)
    except:
        print("[error] check key (inputColumns) and value")
        return "[error] check key (inputColumns) and value (check type inputColumns)"
        pass
Пример #25
0
def upload_file_url():
    try:
        #   Get file
        url = request.args.get("urlData")
        data_name = request.args.get("dataName")
        separator = request.args.get("separator")
        if data_name == "":
            data_name = "dataset_not_name"
        user_id = request.args.get("userId")
    except AttributeError:
        print("[error] can't find file_upload (upfile function app.py)")
        pass
    try:
        #   Create random id
        random_id = str(uuid.uuid4())[:8]
        #   Random file_name
        filename_upload_random = str(random_id) + "_" + "upload.csv"
        #   get file_path
        if os.path.exists(app.config["UPLOAD_FOLDER"]):
            file_path_upload = os.path.join(app.config["UPLOAD_FOLDER"],
                                            filename_upload_random)
        else:
            os.makedirs(app.config["UPLOAD_FOLDER"])
            file_path_upload = os.path.join(app.config["UPLOAD_FOLDER"],
                                            filename_upload_random)
        #   save file
        # Save file locally
        a = urlretrieve(url, file_path_upload)
        # Read file into a DataFrame and print its head
    except UnboundLocalError:
        print(
            "[error] local variable 'filename' referenced before assignment (upfile function app.py)"
        )
        pass
    except ValueError:
        data_return_err = {"error": "unknown url"}
        return data_return_err
    try:
        data, col, n, m = DATA.read("csv", file_path_upload, separator)
        file_name_csv = data_name + ".csv"
        file_path_save_csv = os.path.join(app.config["UPLOAD_FOLDER"],
                                          file_name_csv)
        export_csv = data.to_csv(file_path_save_csv, index=None, header=True)
        data_str = DATA.convert_str(file_path_save_csv)
        data_str = str(data_str)
        data_post = {
            "jsonData": data_str,
            "dataName": data_name,
            "userUpload": {
                "__type": "Pointer",
                "className": "_User",
                "objectId": user_id,
            },
            "delimiter": separator,
            "uploadFrom": "url",
        }
        class_name = "Data"
        data = API.post(class_name, data_post)
        print(data)
        return data
    except UnboundLocalError:
        print("[error] ")
        return "fail, can't upload dataset"