def plot_metric(ax: Axes, metric: PlotMetric,
                    gdf: GeoDataFrame) -> Axes:  # type: ignore
        # nicely format the colorbar
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.1)

        gdf.plot(  # type: ignore
            metric.metric,
            ax=ax,
            legend=True,
            cmap=metric.cmap,
            vmin=metric.vmin,
            vmax=metric.vmax,
            cax=cax)
        ax.set_title(f'{metric.metric.upper()}')
        return ax
Пример #2
0
def _plot_single_gdf(ax: Axes,
                     gdf: GeoDataFrame,
                     column_to_plot: str,
                     title: Optional[str] = None,
                     cmap: Optional[str] = 'viridis',
                     vmin: Optional[float] = None,
                     vmax: Optional[float] = None) -> Axes:
    # nicely format the colorbar
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.1)

    gdf.plot(column_to_plot,
             ax=ax,
             legend=True,
             cmap=cmap,
             vmin=vmin,
             vmax=vmax,
             cax=cax)
    ax.set_title(title)
    return ax
Пример #3
0
def simplify_and_mapping(data_source):
    if data_source == 'lwm':
        tau = 2
        buildings = extract_footprint_from_prism('../data/lwm-prism.gml')
    else:  # Only for Manhattan, New York
        tau = 0.00003
        buildings = ox.footprints_from_place(
            '{}, Manhattan, New York City'.format(data_source))
    douglas_peucker_buildings = GeoDataFrame()
    simplified_buildings = GeoDataFrame()
    sum_haus = [0.0, 0.0]
    total_points = [0, 0]
    tolerance = tau * 3 / 5

    def comparison(footprint, i):
        new_footprint = prism.simplify(footprint,
                                       tau=tau,
                                       epsilon=math.pi / 30)
        if new_footprint is not None:
            simplified_buildings.loc[i, 'geometry'] = new_footprint
            haus = footprint.hausdorff_distance(new_footprint)
            sum_haus[1] += haus
            total_points[1] += len(new_footprint.exterior.coords)

            dp_footprint = footprint.simplify(tolerance)
            douglas_peucker_buildings.loc[i, 'geometry'] = dp_footprint

            haus = footprint.hausdorff_distance(dp_footprint)
            sum_haus[0] += haus
            total_points[0] += len(dp_footprint.exterior.coords)

    count = 0
    for geom in buildings['geometry']:
        if geom.geom_type == 'Polygon':
            comparison(geom, count)
            count += 1
        if geom.geom_type == 'MultiPolygon':
            for poly in geom:
                comparison(poly, count)
                count += 1

    print("Average Hausdorff Distance (Douglas Peucker):", sum_haus[0] / count)
    print("Average Hausdorff Distance (Indoor Simplification):",
          sum_haus[1] / count)
    print("Total Number of Points (Douglas Peucker):", total_points[0])
    print("Total Number of Points (Indoor Simplification):", total_points[1])

    cell_text = [[tolerance, tau], [sum_haus[0] / count, sum_haus[1] / count],
                 [total_points[0], total_points[1]]]
    # mapping
    minx, miny, maxx, maxy = buildings.total_bounds
    map_scale = 50
    width = maxx - minx
    height = maxy - miny
    ratio = width / height
    mbr = (ratio * map_scale, map_scale)
    fig, ax = plt.subplots(figsize=mbr)
    buildings.plot(ax=ax,
                   facecolor='green',
                   edgecolor='grey',
                   linewidth=0.2,
                   alpha=0.1)
    douglas_peucker_buildings.plot(ax=ax, facecolor='blue', alpha=0.1)
    simplified_buildings.plot(ax=ax, facecolor='red', alpha=0.1)

    ax.table(cellText=cell_text,
             rowLabels=[
                 "Distance Tolerance", "Average Hausdorff Distance",
                 "Total Number of Points"
             ],
             colLabels=["Douglas Peucker", "Indoor Simplification"],
             colWidths=[0.05 / ratio, 0.05 / ratio],
             loc='lower right')

    legend_elements = [
        Patch(facecolor='green',
              edgecolor='grey',
              linewidth=0.2,
              alpha=0.1,
              label='Original'),
        Patch(facecolor='blue', alpha=0.1, label='Douglas Peucker'),
        Patch(facecolor='red', alpha=0.1, label='Indoor Simplification')
    ]
    ax.legend(handles=legend_elements,
              loc='upper right',
              title='Simplification Method',
              fontsize=map_scale,
              title_fontsize=map_scale)
    plt.tight_layout()
    plt.savefig('../examples/{}.pdf'.format(data_source), format='pdf')
Пример #4
0
postcode_dao = PostcodeDAO(session)
way_dao = WayDAO(session)

# Representación de las calles con GeoSeries
# Extraemos todas las calles
ways = []
for way in way_dao.getAll():
    ways.append(to_shape(way.geom))
wgs = GeoSeries(ways)
base = wgs.plot(color="blue")

qfilter = {'ad_type': 'RENT', 'asset_type': 'GARAGE'}
prices = session.execute(
    'SELECT postcode, avg_price FROM inmosig_average_prices WHERE ad_type = :ad_type AND '
    'asset_type = :asset_type', qfilter)

gdf = GeoDataFrame(columns=['geometry', 'price', 'postcode'])
for price in prices.fetchall():
    postcode = postcode_dao.search_by_postcode(price[0])
    if postcode is not None:
        gdf = gdf.append(
            {
                'geometry': to_shape(postcode.geom),
                'price': float(price[1]),
                'postcode': price[0]
            },
            ignore_index=True)

gdf.head()
gdf.plot(ax=base, column='price', cmap='OrRd', scheme="quantiles", legend=True)
plt.show()