def run(): print('input: ',gpr.get_com_file(0)) # start from data centered on COM already: x,y,v = np.loadtxt(gpr.get_com_file(0),\ skiprows=1,usecols=(0,1,2),unpack=True) #[rscale], [rscale], [km/s] # calculate 2D radius on the skyplane r = np.sqrt(x**2+y**2) #[rscale] # set number and size of (linearly spaced) bins rmin = 0. #[rscale] rmax = max(r) if gpr.rprior<0 else 1.0*gpr.rprior #[rscale] print('rmax [rscale] = ', rmax) sel = (r<rmax) x = x[sel]; y = y[sel]; v = v[sel] #[rscale] totmass = 1.*len(x) #[munit], munit = 1/star if gp.lograd: # space logarithmically in radius binmin, binmax, rbin = bin_r_log(rmax/gpr.nbins, rmax, gpr.nbins) elif gp.consttr: binmin, binmax, rbin = bin_r_const_tracers(r, len(r)/gpr.nbins) else: binmin, binmax, rbin = bin_r_linear(rmin, rmax, gpr.nbins) #volume of a circular bin from binmin to binmax vol = np.zeros(gpr.nbins) for k in range(gpr.nbins): vol[k] = np.pi*(binmax[k]**2-binmin[k]**2) # [rscale**2] # rs = gpr.rerror*np.random.randn(len(r))+r rs = r #[rscale] # if no initial offset is whished print('output: ') print(gpr.get_ntracer_file(0)) tr = open(gpr.get_ntracer_file(0),'w') print(totmass, file=tr) tr.close() print(gpr.get_dens_file(0)) de = open(gpr.get_dens_file(0),'w') print(gpr.get_enc_mass_file(0)) em = open(gpr.get_enc_mass_file(0),'w') print('r','nu(r)/nu(0)','error', file=de) print('r','M(<r)','error', file=em) # 30 iterations for getting random picked radius values density = np.zeros((gpr.nbins,gpr.n)) a = np.zeros((gpr.nbins,gpr.n)) for k in range(gpr.n): rsi = gpr.rerror * np.random.randn(len(rs)) + rs # [rscale] for j in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(rsi>=binmin[j],rsi<binmax[j])).flatten() # [1] density[j][k] = (1.*len(ind1))/vol[j]*totmass # [munit/rscale**2] a[j][k] = 1.*len(ind1) #[1] dens0 = np.sum(density[0])/(1.*gpr.n) # [munit/rscale**2] print('dens0 = ',dens0,'[munit/rscale**2]') crscale = open(gpr.get_params_file(0),'r') rscale = np.loadtxt(crscale, comments='#', skiprows=1, unpack=False) crscale.close() cdens = open(gpr.get_params_file(0),'a') print(dens0, file=cdens) # [munit/rscale**2] print(dens0/rscale**2, file=cdens) # [munit/pc**2] print(totmass, file=cdens) # [munit] cdens.close() ab0 = np.sum(a[0])/(1.*gpr.n) # [1] denserr0 = dens0/np.sqrt(ab0) # [munit/rscale**2] p_dens = np.zeros(gpr.nbins); p_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): dens = np.sum(density[b])/(1.*gpr.n) # [munit/rscale**2] ab = np.sum(a[b])/(1.*gpr.n) # [1] denserr = dens/np.sqrt(ab) # [munit/rscale**2] denserror = np.sqrt((denserr/dens0)**2+(dens*denserr0/(dens0**2))**2) #[1] if(math.isnan(denserror)): denserror = 0. # [1] ## [PS]: TODO: change bin sizes to include same number of ## stars in each bin, not assigning wrong density as below p_dens[b] = p_dens[b-1] # [1] p_edens[b]= p_edens[b-1] # [1] else: p_dens[b] = dens/dens0 # [1] p_edens[b]= denserror # [1] #100/rbin would be artificial guess for b in range(gpr.nbins): print(rbin[b],p_dens[b],p_edens[b], file=de) # [rscale], [dens0], [dens0] indr = (r<binmax[b]) menclosed = 1.0*np.sum(indr)/totmass # /totmass for normalization to 1 at last bin #[totmass] merror = menclosed/np.sqrt(ab) # artificial menclosed/10 gives good approximation #[totmass] print(rbin[b],menclosed,merror, file=em) # [rscale], [totmass], [totmass] # TODO: check: take rbinmax for MCMC? de.close() em.close() if not gpr.showplots: return ion(); subplot(111) print('rbin = ',rbin) print('p_dens = ',p_dens) print('p_edens = ',p_edens) plot(rbin,p_dens,'b',linewidth=3) lbound = p_dens-p_edens; lbound[lbound<1e-6] = 1e-6 ubound = p_dens+p_edens; fill_between(rbin,lbound,ubound,alpha=0.5,color='r') # xscale('log'); yscale('log') xlim([np.min(rbin),np.max(rbin)]) ylim([np.min(lbound),np.max(ubound)]) # ylim([1e-3,3.])#ylim([1e-6,2*np.max(p_dens)]) # ylim([0,1]) xlabel(r'$r [r_c]$') ylabel(r'$\nu(r)/\nu(0)$') # plt.legend(['\rho','\rho'],'lower left') # title(fil) # axes().set_aspect('equal') savefig(gpr.get_dens_png(0)) if gpr.showplots: ioff(); show(); clf()
def run(): xall, yall = np.loadtxt(gpr.get_com_file(0), skiprows=1, usecols=(0, 1), unpack=True) # 2*[Rscale] # calculate 2D radius on the skyplane R = np.sqrt(xall ** 2 + yall ** 2) # [Rscale] # set number and size of (linearly spaced) bins Rmin = 0.0 # [Rscale] Rmax = max(r) if gpr.rprior < 0 else 1.0 * gpr.rprior # [Rscale] print("Rmax [Rscale] = ", Rmax) R = R[(R < Rmax)] # determine radius once and for all # this must not be changed between readout and gravlite run # if you wish to change: set gp.getnewdata = True in gl_params.py if gp.lograd: print(gpr.nbins, " bins in log spacings") Binmin, Binmax, Rbin = bin_r_log(Rmax / gpr.nbins, Rmax, gpr.nbins) elif gp.consttr: print(len(R) / gpr.nbins, " particles per bin") Binmin, Binmax, Rbin = bin_r_const_tracers(R, len(R) / gpr.nbins) else: print(gpr.nbins, " bins in linear spacings") Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) # volume of a circular ring from binmin to binmax vol = np.zeros(gpr.nbins) for k in range(gpr.nbins): vol[k] = 4.0 * np.pi / 3.0 * (Binmax[k] ** 3 - Binmin[k] ** 3) # [Rscale^3] for comp in range(gpr.ncomp): print("####### working on component ", comp) print("input: ", gpr.get_com_file(comp) + "_3D") # start from data centered on COM already: if gfile.bufcount(gpr.get_com_file(comp) + "_3D") < 2: continue x, y, z, v = np.loadtxt( gpr.get_com_file(comp) + "_3D", skiprows=1, usecols=(0, 1, 2, 3), unpack=True ) # 3*[Rscale], [km/s] # calculate 2D radius on the skyplane r = np.sqrt(x ** 2 + y ** 2) # [Rscale] # set maximum radius (if gpr.rprior is set) rmax = max(r) if gpr.rprior < 0 else 1.0 * gpr.rprior # [Rscale] print("rmax [Rscale] = ", rmax) sel = r <= rmax x = x[sel] y = y[sel] z = z[sel] v = v[sel] r = r[sel] # [Rscale] totmass = 1.0 * len(x) # [munit], munit = 1/star rs = r # + possible starting offset, [Rscale] vlos = v # + possible starting offset, [km/s] print("output density: ") print(gpr.get_ntracer_file(comp) + "_3D") tr = open(gpr.get_ntracer_file(comp) + "_3D", "w") print(totmass, file=tr) tr.close() print(gpr.get_dens_file(comp) + "_3D") de = open(gpr.get_dens_file(comp) + "_3D", "w") print("rbin", "binmin", "binmax", "nu(r)/nu(0)", "error", file=de) print(gpr.get_enc_mass_file(comp) + "_3D") em = open(gpr.get_enc_mass_file(comp) + "_3D", "w") print("rbin", "binmin", "binmax", "M(<r)", "error", file=em) # gpr.n=30 iterations for getting random picked radius values density = np.zeros((gpr.nbins, gpr.n)) a = np.zeros((gpr.nbins, gpr.n)) # shared by density, siglos, kappa calcs for k in range(gpr.n): rsi = gpr.Rerror * np.random.randn(len(rs)) + rs # [Rscale] vlosi = gpr.vrerror * np.random.randn(len(vlos)) + vlos # [km/s] for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(rsi >= Binmin[i], rsi < Binmax[i])).flatten() # [1] density[i][k] = (1.0 * len(ind1)) / vol[i] * totmass # [munit/Rscale^2] vlos1 = vlosi[ind1] # [km/s] a[i][k] = 1.0 * len(ind1) # [1] # output density dens0 = np.sum(density[0]) / (1.0 * gpr.n) # [munit/Rscale^3] print("dens0 = ", dens0, " [munit/Rscale^3]") crscale = open(gpr.get_params_file(comp) + "_3D", "r") Rscale = np.loadtxt(crscale, comments="#", skiprows=1, unpack=False) crscale.close() cdens = open(gpr.get_params_file(comp) + "_3D", "a") print(dens0, file=cdens) # [munit/Rscale^3] print(dens0 / Rscale ** 3, file=cdens) # [munit/pc^3] print(totmass, file=cdens) # [munit] cdens.close() ab0 = np.sum(a[0]) / (1.0 * gpr.n) # [1] denserr0 = dens0 / np.sqrt(ab0) # [munit/Rscale^3] p_dens = np.zeros(gpr.nbins) p_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): dens = np.sum(density[b]) / (1.0 * gpr.n) # [munit/Rscale^3] ab = np.sum(a[b]) / (1.0 * gpr.n) # [1] denserr = dens / np.sqrt(ab) # [munit/Rscale^3] denserror = np.sqrt((denserr / dens0) ** 2 + (dens * denserr0 / (dens0 ** 2)) ** 2) # [1] if math.isnan(denserror): denserror = 0.0 # [1] p_dens[b] = p_dens[b - 1] # [1] p_edens[b] = p_edens[b - 1] # [1] else: p_dens[b] = dens / dens0 # [1] p_edens[b] = denserror # [1] #100/rbin would be artificial guess print(Rbin[b], Binmin[b], Binmax[b], p_dens[b], p_edens[b], file=de) # [Rscale], 2*[dens0] indr = r < Binmax[b] menclosed = 1.0 * np.sum(indr) / totmass # for normalization to 1 # [totmass] merror = menclosed / np.sqrt(ab) # artificial menclosed/10 # [totmass] print(Rbin[b], Binmin[b], Binmax[b], menclosed, merror, file=em) # [rscale], 2*[totmass] # TODO: check: take rbinmax for MCMC? de.close() em.close() if not gpr.showplots: continue # plot density ion() subplot(111) print("rbin = ", Rbin) print("p_dens = ", p_dens) print("p_edens = ", p_edens) plot(Rbin, p_dens, "b", lw=1) lbound = p_dens - p_edens lbound[lbound < 1e-6] = 1e-6 ubound = p_dens + p_edens fill_between(Rbin, lbound, ubound, alpha=0.5, color="r") yscale("log") xlim([0, gpr.rprior]) ylim([np.min(lbound), np.max(ubound)]) xlabel(r"$r [r_c]$") ylabel(r"$\nu(r)/\nu(0)$") savefig(gpr.get_dens_png(i) + "_3D.png") ioff() show() clf()
def run(): # determine radius once and for all from all tracers R, Phi, vzall = np.loadtxt(gpr.fileposspherical[0], comments='#',unpack=True) # 2*[Rscale], [km/s] # set number and size of (linearly spaced) bins Rmin = 0. # [Rscale] Rmax = max(R) if gpr.rprior<0 else 1.0*gpr.rprior # [Rscale] print('Rmax [Rscale] = ', Rmax) # [Rscale] R = R[(R<=Rmax)] # [Rscale] # this must not be changed between readout and gravlite run # if you wish to change: set gp.getnewdata = True in gl_params.py if gp.lograd: Binmin, Binmax, Rbin = bin_r_log(Rmax/gpr.nbins, Rmax, gpr.nbins) print(gpr.nbins,' bins in log spacings') elif gp.consttr: Binmin, Binmax, Rbin = bin_r_const_tracers(R, len(R)/gpr.nbins) print(len(R)/gpr.nbins,' particles per bin') else: Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) print(gpr.nbins, ' bins in linear spacings') # volume of a circular ring from binmin to binmax Vol = np.zeros(gpr.nbins) for k in range(gpr.nbins): Vol[k] = np.pi*(Binmax[k]**2-Binmin[k]**2) # [Rscale^2] for comp in range(gpr.ncomp): print('####### working on component ',comp) print('grh_MCMCbin: input: ',gpr.fileposspherical[comp]) # start from data centered on COM already: if gfile.bufcount(gpr.fileposspherical[comp])<2: continue R, Phi, v = np.loadtxt(gpr.fileposspherical[comp],\ comments='#',unpack=True) # [Rscale], [1], [km/s] # set maximum radius (if gpr.rprior is set) Rmax = max(R) if gpr.rprior<0 else 1.0*gpr.rprior # [Rscale] print('Rmax [Rscale] = ', Rmax) sel = (R<=Rmax) R = R[sel]; v = v[sel] # [Rscale], [km/s] totmass = 1.*len(R) # [munit], munit = 1/star Rs = R # + possible starting offset, [Rscale] vlos = v # + possible starting offset, [km/s] print('grh_MCMCbin: output density: ') print(gpr.get_ntracer_file(comp)) tr = open(gpr.get_ntracer_file(comp),'w') print(totmass, file=tr) tr.close() print(gpr.filedenfalloff[comp]) de = open(gpr.filedenfalloff[comp],'w') print('Rbin [Rscale]','Binmin [Rscale]','Binmax [Rscale]',\ 'Nu(R)/Nu(0) [1]','error [1]', file=de) print(gpr.filemass[comp]) em = open(gpr.filemass[comp],'w') print('R [Rscale]','Binmin [Rscale]','Binmax [Rscale]',\ 'M(<Binmax) [Msun]','error [Msun]', file=em) print('grh_MCMCbin: output siglos: ',gpr.filesig[comp]) sigfil = open(gpr.filesig[comp],'w') print('R [Rscale]','Binmin [Rscale]','Binmax [Rscale]',\ 'sigma_r(R) [km/s]','error [km/s]', file=sigfil) print('grh_MCMCbin: output kurtosis: ',gpr.filekappa[comp]) kappafil = open(gpr.filekappa[comp],'w') print('R [Rscale]','Binmin [Rscale]','Binmax [Rscale]',\ 'kappa_los(R) [1]','error [1]', file=kappafil) # gpr.n=30 iterations for getting random picked radius values Density = np.zeros((gpr.nbins,gpr.n)) dispvelocity = np.zeros((gpr.nbins,gpr.n)) mom4 = np.zeros((gpr.nbins,gpr.n)) a = np.zeros((gpr.nbins,gpr.n)) # 'a' shared by density, siglos, kappa calcs for k in range(gpr.n): Rsi = gpr.Rerror * np.random.randn(len(Rs)) + Rs # [Rscale] vlosi = gpr.vrerror * np.random.randn(len(vlos)) + vlos # [km/s] for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(Rsi >= Binmin[i],Rsi<Binmax[i])).flatten() # [1] Density[i][k] = (1.*len(ind1))/Vol[i]*totmass # [munit/rscale**2] vlos1 = vlosi[ind1] # [km/s] if(len(ind1)<=1): dispvelocity[i][k] = dispvelocity[i-1][k] mom4[i][k] = mom4[i-1][k] # attention! should be 0, uses last value else: dispvelocity[i][k] = meanbiweight(vlos1,ci_perc=68.4,ci_mean=True,ci_std=True)[1] # [km/s], see BiWeight.py mom4[i][k] = kurtosis(vlos1, axis=0, fisher=False, bias=False) # [1] a[i][k] = 1.*len(ind1) #[1] # output density Dens0 = np.sum(Density[0])/(1.*gpr.n) # [munit/Rscale^2] print('Dens0 = ',Dens0,'[munit/Rscale^2]') crscale = open(gpr.get_params_file(comp),'r') Rscale = np.loadtxt(crscale, comments='#', unpack=False) # [pc] crscale.close() cdens = open(gpr.get_params_file(comp),'a') print(Dens0, file=cdens) # [munit/Rscale^2] print(Dens0*Rscale**2, file=cdens) # [munit/pc^2] print(totmass, file=cdens) # [munit] cdens.close() ab0 = np.sum(a[0])/(1.*gpr.n) # [1] Denserr0 = Dens0/np.sqrt(ab0) # [munit/Rscale^2] P_dens = np.zeros(gpr.nbins); P_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): Dens = np.sum(Density[b])/(1.*gpr.n) # [munit/Rscale^2] ab = np.sum(a[b])/(1.*gpr.n) # [1] Denserr = Dens/np.sqrt(ab) # [munit/Rscale^2] Denserror = np.sqrt((Denserr/Dens0)**2+(Dens*Denserr0/(Dens0**2))**2) # [1] if(math.isnan(Denserror)): Denserror = 0. # [1] P_dens[b] = P_dens[b-1] # [1] P_edens[b]= P_edens[b-1] # [1] else: P_dens[b] = Dens/Dens0 # [1] P_edens[b]= Denserror # [1] #100/rbin would be artificial guess print(Rbin[b],Binmin[b],Binmax[b],P_dens[b],P_edens[b], file=de) # [Rscale], [dens0], [dens0] indr = (R<Binmax[b]) Menclosed = 1.0*np.sum(indr)/totmass # for normalization to 1 # [totmass] Merror = Menclosed/np.sqrt(ab) # or artificial Menclosed/10 # [totmass] print(Rbin[b], Binmin[b], Binmax[b], Menclosed, Merror, file=em) # [Rscale], 2* [totmass] de.close() em.close() # output siglos p_dvlos = np.zeros(gpr.nbins); p_edvlos = np.zeros(gpr.nbins) for b in range(gpr.nbins): dispvel = np.sum(dispvelocity[b])/gpr.n # [km/s] ab = np.sum(a[b])/(1.*gpr.n) # [1] if ab == 0: dispvelerror = p_edvlos[b-1] # [km/s] # attention! uses last error else: dispvelerror = dispvel/np.sqrt(ab) # [km/s] p_dvlos[b] = dispvel # [km/s] p_edvlos[b]= dispvelerror # [km/s] maxvlos = max(p_dvlos) # [km/s] print('maxvlos = ',maxvlos,'[km/s]') fpars = open(gpr.get_params_file(comp),'a') print(maxvlos, file=fpars) # [km/s] fpars.close() for b in range(gpr.nbins): # [Rscale] [Rscale] [Rscale] [maxvlos] [maxvlos] print(Rbin[b],Binmin[b],Binmax[b], np.abs(p_dvlos[b]/maxvlos),np.abs(p_edvlos[b]/maxvlos), file=sigfil) # TODO: check uncommented /np.sqrt(n)) sigfil.close() # output kurtosis kappa p_kappa = np.zeros(gpr.nbins) # needed for plotting later p_ekappa = np.zeros(gpr.nbins) for b in range(gpr.nbins): kappavel = np.sum(mom4[b])/gpr.n # [1] ab = np.sum(a[b])/(1.*gpr.n) # [1] if ab == 0: kappavelerror = p_edvlos[b-1] # [1] # attention! uses last error else: kappavelerror = np.abs(kappavel/np.sqrt(ab)) # [1] p_kappa[b] = kappavel p_ekappa[b] = kappavelerror print(Rbin[b],Binmin[b],Binmax[b],\ kappavel, kappavelerror, file=kappafil) # 3*[Rscale], 2*[1] # TODO: /np.sqrt(n)) kappafil.close() if not gpr.showplots: continue # plot density ion(); subplot(111) print('Rbin = ',Rbin) print('P_dens = ',P_dens) print('P_edens = ',P_edens) plot(Rbin,P_dens,'b',lw=1) lbound = P_dens-P_edens; lbound[lbound<1e-6] = 1e-6 ubound = P_dens+P_edens; fill_between(Rbin, lbound, ubound, alpha=0.5, color='r') yscale('log') xlim([0,3.]) ylim([np.min(lbound), np.max(ubound)]) xlabel(r'$R [R_c]$') ylabel(r'$\nu_{2D}(R)/\nu_{2D}(0)$') savefig(gpr.get_dens_png(comp)) # from gl_analytic import Sigma_anf # plot(Rbin, Sigma_anf(Rbin*Rscale)) # Sigma_anf argument in [pc] ! ioff(); show(); clf() # plot siglos ion(); subplot(111) print('Rbin = ',Rbin,' Rscale') print('p_dvlos = ',p_dvlos,' km/s') print('p_edvlos = ',p_edvlos, 'km/s') plot(Rbin,p_dvlos,'b',lw=1) fill_between(Rbin,p_dvlos-p_edvlos,p_dvlos+p_edvlos,alpha=0.5,color='r') #[rscale],2*[km/s] xlabel(r'$R [\mathrm{Rscale}]$') ylabel(r'$\langle\sigma_{\mathrm{LOS}}\rangle [\mathrm{km/s}]$') ylim([0.,1.5*max(p_dvlos)]) xlim([0,3]) savefig(gpr.get_siglos_png(comp)) # from gl_analytic import sig_los_anf # plot(Rbin,sig_los_anf(Rbin*Rscale)) # argument must be [pc] ! ioff();show();clf() # plot kappa ion(); subplot(111) print('Rbin = ',Rbin,' Rscale') print('p_kappa = ',p_kappa) print('p_ekappa = ',p_ekappa) plot(Rbin,p_kappa,'b',lw=1) fill_between(Rbin,p_kappa-p_ekappa,p_kappa+p_ekappa,alpha=0.5,color='r') #[rscale],2*[1] xlabel(r'$R [\mathrm{Rscale}]$') ylabel(r'$\langle\kappa_{\mathrm{LOS}}\rangle [1]$') ylim([0,5]) xlim([0,3]) savefig(gpr.get_kurtosis_png(comp)) ioff();show();clf()
print 'input:' print gpr.fileposspherical r,phi = np.loadtxt(gpr.fileposspherical, unpack=True, skiprows=1) # rs=rerror*np.random.randn(len(r))+r # rs not changed later on, ever: misplacement, for all realizations. wanted? # yes, we scatter radii in foo_pool rs = r rmin = min(rs); rmax = max(rs) if gp.lograd: print gpr.nbins,' bins in log spacings' binmin, binmax, rbin = bin_r_log(rmax/gpr.nbins, rmax, gpr.nbins) elif gp.consttr: print len(r)/gpr.nbins,' particles per bin' binmin, binmax, rbin = bin_r_const_tracers(rs, len(rs)/gpr.nbins) else: print gpr.nbins, ' bins in linear spacings' binmin, binmax, rbin = bin_r_linear(rmin, rmax, gpr.nbins) # volume of a bin with height binlength, 2D vol=np.zeros(gpr.bins) for i in range(gpr.bins): vol[i] = np.pi*(binmax[i]**2-binmin[i]**2) def foo_pool(k): rsi = gpr.rerror*np.random.randn(len(rs))+rs locdens = []; loca = [] for i in range(gpr.bins): ind1 = np.argwhere( np.logical_and(rsi > binmin[i], rsi < binmax[i])).flatten()
def run(): for comp in range(gpr.ncomp): print('input:') print(gpr.fileposspherical[comp]) R,Phi,vz = np.loadtxt(gpr.fileposspherical[comp], unpack=True, skiprows=1) vz /= 0.482126 # [km/s], for G = L = M = 1 Rs = R[:] # gpr.Rerror*np.random.randn(len(r))+r # for initial offset vzs = vz[:] # gpr.vrerror*np.random.randn(len(vx))+vx # same same Rmin = min(Rs); Rmax = max(Rs) if gp.lograd: Binmin, Binmax, Rbin = bin_r_log(Rmax/gpr.nbins, Rmax, gpr.nbins) print(gpr.nbins,' bins in log spacings') elif gp.consttr: Binmin, Binmax, Rbin = bin_r_const_tracers(Rs, len(Rs)/gpr.nbins) print(len(R)/gpr.nbins,' particles per bin') else: Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) print(gpr.nbins, ' bins in linear spacings') # if Dispvel is [] still after pool call, # some error occured inside following function: def foo_pool(k): Rsi = gpr.Rerror * np.random.randn(len(Rs))+Rs vzsi = gpr.vrerror * np.random.randn(len(vzs))+vzs locdisp=[]; loca = [] for b in range(gpr.bins): ind1 = np.argwhere( np.logical_and(Rsi > Binmin[b],\ Rsi <= Binmax[b])).flatten() vz1 = vzsi[ind1] locdisp.append(meanbiweight(vz1,\ ci_perc=68.4,ci_mean=True,\ ci_std=True)[1]) loca.append(len(ind1)) return locdisp,loca Dispvel=[]; alog=[] def log_result(result): # This is called whenever foo_pool(i) returns a result. # result_list is modified only by the main process, not the pool workers dis, alo = result Dispvel.append(dis) alog.append(alo) pool = mp.Pool(processes=gpr.procs) for k in range(gpr.nit): pool.apply_async(foo_pool, args = (k, ), callback = log_result) pool.close() pool.join() Sigarr = np.array(Dispvel) abarr = np.array(alog) print('output:') print(gpr.filesig) filesig = open(gpr.filesig[comp],'w') print('R [pc]','Binmin [pc]','Binmax [pc]','Sigma_los(R) [km/s]','error [km/s]', file=filesig) P_Sigma = np.zeros(gpr.bins); P_ESigma = np.zeros(gpr.bins) for b in range(gpr.bins): P_Sigma[b] = np.sum(Sigarr[:,b])/gpr.nit ab = np.sum(abarr[:,b])/gpr.nit P_ESigma[b] = P_Sigma[b]/np.sqrt(ab) print(Rbin[b],Binmin[b],Binmax[b],P_Sigma[b],P_ESigma[b], file=filesig) print(Rbin[b],P_Sigma[b],P_ESigma[b]) filesig.close() if not gpr.showplots: continue # plot siglos ion(); subplot(111) plot(Rbin,P_Sigma,'b',lw=1) fill_between(Rbin,P_Sigma-P_ESigma,P_Sigma+P_ESigma,alpha=0.5,color='r') #[rscale],2*[km/s] xlabel(r'$R [\mathrm{Rscale}]$') ylabel(r'$\langle\sigma_{\mathrm{LOS}}\rangle [\mathrm{km/s}]$') # ylim([-5,30]) # xlim([0,3]) savefig(gpr.get_siglos_png(comp)) if gpr.showplots: ioff();show();clf() return
def run(): for comp in range(gpr.ncomp): print('input:',gpr.fileposspherical[comp]) R, Phi, vlos = np.loadtxt(gpr.fileposspherical[comp],\ comments='#', unpack=True) Totmass = 1.*len(R) # [munit], munit = 1/star # Rs=gpr.Rerror*np.random.randn(len(r))+r # Rs not changed later on, ever: misplacement, for all realizations. wanted? # yes, we scatter radii in foo_pool Rs = R; Rmin = min(Rs); Rmax = max(Rs) if gp.lograd: print(gpr.nbins,' bins in log spacings') Binmin, Binmax, Rbin = bin_r_log(Rmax/gpr.nbins, Rmax, gpr.nbins) elif gp.consttr: Binmin, Binmax, Rbin = bin_r_const_tracers(Rs, len(Rs)/gpr.nbins) print(len(R)/gpr.nbins,' particles per bin') else: print(gpr.nbins, ' bins in linear spacings') Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) # volume of a bin with height binlength, 2D Vol = np.zeros(gpr.bins) for i in range(gpr.bins): Vol[i] = np.pi*(Binmax[i]**2-Binmin[i]**2) # gpr.n=30 iterations for getting random picked radius values Density = np.zeros((gpr.nbins,gpr.n)) A = np.zeros((gpr.nbins,gpr.n)) # shared by density, siglos, kappa calcs for k in range(gpr.n): Rsi = gpr.Rerror * np.random.randn(len(Rs)) + Rs # [Rscale] vlosi = gpr.vrerror * np.random.randn(len(vlos)) + vlos for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(Rsi>=Binmin[i], Rsi<Binmax[i])).flatten() # [1] Density[i][k] = (1.*len(ind1))/Vol[i]*Totmass # [munit/Rscale^2] vlos1 = vlosi[ind1] # [km/s] A[i][k] = 1.*len(ind1) # [1] # output density Dens0 = np.sum(Density[0])/(1.*gpr.n) # [munit/Rscale^3] print('Dens0 = ',Dens0,' [munit/Rscale^2]') crscale = open(gpr.get_params_file(comp),'r') Rscale = np.loadtxt(cscale, comments='#', unpack=False) crscale.close() cdens = open(gpr.get_params_file(comp),'a') print(Dens0,file=cdens) # [munit/Rscale^2] print(Dens0/Rscale**2,file=cdens) # [munit/pc^2] print(Totmass,file=cdens) # [munit] cdens.close() print(gpr.get_dens_file(comp)) de = open(gpr.get_dens_file(comp),'w') print('# Rbin [Rscale]','Binmin [Rscale]','Binmax [Rscale]', 'Nu(R)/Nu(0) [1]','error [1]', file=de) print(gpr.get_enc_mass_file(comp)) em = open(gpr.get_enc_mass_file(comp),'w') print('# R [Rscale]','Binmin [Rscale]','Binmax [Rscale]',\ 'M(<Binmax) [Msun]','error [Msun]', file=em) AB0 = np.sum(A[0])/(1.*gpr.n) # [1] Denserr0 = Dens0/np.sqrt(AB0) # [munit/Rscale^3] P_dens = np.zeros(gpr.nbins); P_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): Dens = np.sum(Density[b])/(1.*gpr.n) # [munit/Rscale^3] AB = np.sum(A[b])/(1.*gpr.n) # [1] Denserr = Dens/np.sqrt(AB) # [munit/Rscale^3] Denserror = np.sqrt((Denserr/Dens0)**2+(Dens*Denserr0/(Dens0**2))**2) #[1] if(math.isnan(Denserror)): Denserror = 0. # [1] P_dens[b] = P_dens[b-1] # [1] P_edens[b]= P_edens[b-1] # [1] else: P_dens[b] = Dens/Dens0 # [1] P_edens[b]= Denserror # [1] #100/rbin would be artificial guess print(Rbin[b], Binmin[b], Binmax[b], P_dens[b], P_edens[b], file=de) # [Rscale], 2*[dens0] # normalization to 1: indr = (R<Binmax[b]) menclosed = 1.0*np.sum(indr)/Totmass # [Totmass] merror = menclosed/np.sqrt(AB) # artificial menclosed/10 # [Totmass] print(Rbin[b], Binmin[b], Binmax[b], menclosed, merror, file=em) # [rscale], 2*[Totmass] # TODO: check: take rbinmax for MCMC? de.close() em.close() if not gpr.showplots: continue # plot density ion(); subplot(111) print('Rbin = ',Rbin) print('P_dens = ',P_dens) print('P_edens = ',P_edens) plot(Rbin,P_dens,'b',lw=1) lbound = P_dens-P_edens; lbound[lbound<1e-6] = 1e-6 ubound = P_dens+P_edens; fill_between(Rbin, lbound, ubound, alpha=0.5, color='r') yscale('log') # xlim([0,3.]) # ylim([np.min(lbound),np.max(ubound)]) xlabel(r'$R [R_c]$') ylabel(r'$\nu_{2D}(R)/\nu_{2D}(0)$') savefig(gpr.get_dens_png(i)) if gpr.showplots: ioff(); show(); clf() return
def run(): for comp in range(gpr.ncomp): print('input:', gpr.fileposspherical[comp]) R,Phi,vlos = np.loadtxt(gpr.fileposspherical[comp],\ comments='#', unpack=True) Rs = R[:] # gpr.Rerror*np.random.randn(len(r))+r # for initial offset vloss = vlos[:] # gpr.vrerror*np.random.randn(len(vx))+vx # same same Rmin = min(Rs); Rmax = max(Rs) if gp.lograd: print(gpr.nbins,' bins in log spacings') Binmin, Binmax, Rbin = bin_r_log(Rmax/gpr.nbins, Rmax, gpr.nbins) elif gp.consttr: print(len(R)/gpr.nbins,' particles per bin') Binmin, Binmax, Rbin = bin_r_const_tracers(Rs, len(Rs)/gpr.nbins) else: print(gpr.nbins, ' bins in linear spacings') Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) # if Dispvel is [] still after pool call, # some error occured inside following function: def foo_pool(k): Rsi = gpr.Rerror * np.random.randn(len(Rs))+Rs vlossi = gpr.vrerror * np.random.randn(len(vloss))+vloss lockappa=[]; loca = [] for b in range(gpr.bins): ind1 = np.argwhere( np.logical_and(Rsi > Binmin[b],\ Rsi <= Binmax[b])).flatten() vlos1 = vlossi[ind1] lockappa.append(kurtosis(vlossi, axis=0,\ fisher=False, bias=False)) loca.append(len(ind1)) return lockappa,loca Kappavel=[]; alog=[] def log_result(result): # This is called whenever foo_pool(i) returns a result. # result_list is modified only by main process, not pool workers. kappa, alo = result Kappavel.append(kappa) alog.append(alo) pool = mp.Pool(processes=gpr.procs) for k in range(gpr.nit): pool.apply_async(foo_pool, args = (k, ), callback = log_result) pool.close() pool.join() Kappaarr = np.array(Kappavel) abarr = np.array(alog) print('output:', gpr.filekappa[comp]) filekappa = open(gpr.filekappa[comp],'w') print('# R [pc]','Binmin [pc]','Binmax [pc]',\ 'Kappa_los(R) [1]','error [1]', file=filekappa) for b in range(gpr.bins): Kappa = np.sum(Kappaarr[:,b])/gpr.nit ab = np.sum(abarr[:,b])/gpr.nit Kappavelerror = Kappa/np.sqrt(ab) print(Rbin[b], Binmin[b], Binmax[b], \ Kappa, Kappavelerror, file=filekappa) print(Rbin[b], Kappa, Kappavelerror) filekappa.close() return
def run(): xall,yall = np.loadtxt(gpr.get_com_file(0),skiprows=1,usecols=(0,1),unpack=True) # 2*[rcore] # calculate 2D radius on the skyplane r = np.sqrt(xall**2+yall**2) #[rcore] # set number and size of (linearly spaced) bins rmin = 0. #[rcore] rmax = max(r) if gpr.rprior<0 else 1.0*gpr.rprior #[rcore] print 'rmax [rcore] = ', rmax r = r[(r<rmax)] # determine radius once and for all if gp.lograd: print gpr.nbins,' bins in log spacings' binmin, binmax, rbin = bin_r_log(rmax/gpr.nbins, rmax, gpr.nbins) elif gp.consttr: print len(r)/gpr.nbins,' particles per bin' binmin, binmax, rbin = bin_r_const_tracers(r, len(r)/gpr.nbins) else: print gpr.nbins, ' bins in linear spacings' binmin, binmax, rbin = bin_r_linear(rmin, rmax, gpr.nbins) # volume of a circular ring from binmin to binmax vol = np.zeros(gpr.nbins) for k in range(gpr.nbins): vol[k] = np.pi*(binmax[k]**2-binmin[k]**2) # [rcore^2] for comp in range(gpr.ncomp): print 'comp = ',comp print 'input: ',gpr.get_com_file(comp) # start from data centered on COM already: if gfile.bufcount(gpr.get_com_file(comp))<2: continue x,y,vlos = np.loadtxt(gpr.get_com_file(comp),\ skiprows=1,usecols=(0,1,2),unpack=True) #[rcore], [rcore], [km/s] # calculate 2D radius on the skyplane r = np.sqrt(x**2+y**2) #[rcore] # set maximum radius (if gpr.rprior is set) rmax = max(r) if gpr.rprior<0 else 1.0*gpr.rprior #[rcore] print 'rmax [rcore] = ', rmax sel = (r<=rmax) x = x[sel]; y = y[sel]; vlos = vlos[sel]; r = r[sel] #[rcore] totmass = 1.*len(x) #[munit], munit = 1/star rs = r # no offset from the start! # rs = gpr.rerror*np.random.randn(len(r))+r #[rcore] # vlos = gpr.vrerror*np.random.randn(len(vlos))+vlos #[km/s] print 'output: ',gpr.get_siglos_file(comp) vfil = open(gpr.get_siglos_file(comp),'w') print >> vfil,'r','sigma_r(r)','error' # 30 iterations for drawing a given radius in bin dispvelocity = np.zeros((gpr.nbins,gpr.n)) a = np.zeros((gpr.nbins,gpr.n)) p_dvlos = np.zeros(gpr.nbins) p_edvlos = np.zeros(gpr.nbins) for k in range(gpr.n): rsi = gpr.rerror*np.random.randn(len(rs))+rs #[rcore] vlosi = gpr.vrerror*np.random.randn(len(vlos))+vlos #[km/s] for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(rsi>binmin[i],rsi<binmax[i])).flatten() a[i][k] = len(ind1) #[1] vlos1 = vlosi[ind1] #[km/s] if(len(ind1)<=1): dispvelocity[i][k] = dispvelocity[i-1][k] # attention! should be 0, uses last value else: dispvelocity[i][k] = meanbiweight(vlos1,ci_perc=68.4,\ ci_mean=True,ci_std=True)[1] # [km/s], see BiWeight.py for i in range(gpr.nbins): dispvel = np.sum(dispvelocity[i])/gpr.n #[km/s] ab = np.sum(a[i])/(1.*gpr.n) #[1] if ab == 0: dispvelerror = p_edvlos[i-1] #[km/s] # attention! uses last error else: dispvelerror = dispvel/np.sqrt(ab) #[km/s] p_dvlos[i] = dispvel #[km/s] p_edvlos[i]= dispvelerror #[km/s] maxvlos = max(p_dvlos) #[km/s] print 'maxvlos = ',maxvlos,'[km/s]' fpars = open(gpr.get_params_file(comp),'a') print >> fpars,maxvlos #[km/s] fpars.close() for i in range(gpr.nbins): # [rcore] [maxvlos] [maxvlos] print >> vfil,rbin[i], np.abs(p_dvlos[i]/maxvlos),np.abs(p_edvlos[i]/maxvlos) #/np.sqrt(n)) vfil.close() if not gp.testplot_read: continue ion(); subplot(111) print 'rbin = ',rbin,' rcore' print 'p_dvlos = ',p_dvlos,' km/s' print 'p_edvlos = ',p_edvlos, 'km/s' plot(rbin,p_dvlos,'b',lw=1) fill_between(rbin,p_dvlos-p_edvlos,p_dvlos+p_edvlos,alpha=0.5,color='r') #[rcore],[km/s],[km/s] xlabel(r'$r [\mathrm{rcore}]$') ylabel(r'$\langle\sigma_{\mathrm{LOS}}\rangle [\mathrm{km/s}]$') ylim([-5,30]) # xscale('log') xlim([np.min(rbin),np.max(rbin)]) #plt.legend(['\rho','\rho'],'lower left'); #title(dwarf) savefig(gpr.get_siglos_png(comp)) if gpr.showplots: ioff();show();clf()
def run(): # get radius, used for all binning print('input:') print(gpr.get_com_file(0)) if gfile.bufcount(gpr.get_com_file(0))<2: return x,y,vlos = np.loadtxt(gpr.get_com_file(0), skiprows=1, unpack=True) #2*[rscale], [km/s] totmass = 1.*len(x) # [munit], [Msun], where each star is weighted with the same mass r = np.sqrt(x*x+y*y) # [rscale] #set binning #gpr.nbins = (max - min)*N^(1/3)/(2*(Q3-Q1)) #(method of wand) rmin = 0. # [rscale] rmax = max(r) if gpr.rprior<0 else 1.0*gpr.rprior # [rscale] if gp.lograd: # space logarithmically in radius binmin, binmax, rbin = bin_r_log(rmax/gpr.nbins, rmax, gpr.nbins) elif gp.consttr: binmin, binmax, rbin = bin_r_const_tracers(r, len(r)/gpr.nbins) else: binmin, binmax, rbin = bin_r_linear(rmin, rmax, gpr.nbins) # offset from the start! rs = gpr.rerror*np.random.randn(len(r))+r #[rscale] vlos = gpr.vrerror*np.random.randn(len(vlos))+vlos #[km/s] print('output: ',gpr.get_siglos_file(0)) vfil = open(gpr.get_siglos_file(0),'w') print('r','sigma_r(r)','error', file=vfil) # 30 iterations for drawing a given radius in bin dispvelocity = np.zeros((gpr.nbins,gpr.n)) a = np.zeros((gpr.nbins,gpr.n)) p_dvlos = np.zeros(gpr.nbins) p_edvlos = np.zeros(gpr.nbins) for k in range(gpr.n): rsi = gpr.rerror*np.random.randn(len(rs))+rs #[rscale] vlosi = gpr.vrerror*np.random.randn(len(vlos))+vlos #[km/s] for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(rsi>binmin[i],rsi<binmax[i])).flatten() a[i][k] = len(ind1) #[1] vlos1 = vlosi[ind1] #[km/s] if(len(ind1)<=1): dispvelocity[i][k] = dispvelocity[i-1][k] # attention! should be 0, uses last value else: dispvelocity[i][k] = meanbiweight(vlos1,ci_perc=68.4,\ ci_mean=True,ci_std=True)[1] # [km/s], see BiWeight.py for i in range(gpr.nbins): dispvel = np.sum(dispvelocity[i])/gpr.n #[km/s] ab = np.sum(a[i])/(1.*gpr.n) #[1] if ab == 0: dispvelerror = p_edvlos[i-1] #[km/s] # attention! uses last error else: dispvelerror = dispvel/np.sqrt(ab) #[km/s] p_dvlos[i] = dispvel #[km/s] p_edvlos[i]= dispvelerror #[km/s] maxvlos = max(p_dvlos) #[km/s] print('maxvlos = ',maxvlos,'[km/s]') fpars = open(gpr.get_params_file(0),'a') print(maxvlos, file=fpars) #[km/s] fpars.close() import shutil shutil.copy2(gpr.get_params_file(0), gpr.get_params_file(1)) for i in range(gpr.nbins): # [rscale] [maxvlos] [maxvlos] print(rbin[i], np.abs(p_dvlos[i]/maxvlos),np.abs(p_edvlos[i]/maxvlos), file=vfil) #/np.sqrt(n)) vfil.close() if not gpr.showplots: return ion(); subplot(111) print('rbin = ',rbin,' rscale') print('p_dvlos = ',p_dvlos,' km/s') print('p_edvlos = ',p_edvlos, 'km/s') plot(rbin,p_dvlos,'b',linewidth=3) fill_between(rbin,p_dvlos-p_edvlos,p_dvlos+p_edvlos,alpha=0.5,color='r') #[rscale],[km/s],[km/s] xlabel(r'$r [rscale]$') ylabel(r'$\langle\sigma_{LOS}\rangle [km/s]$') ylim([-5,30]) # xscale('log') xlim([np.min(rbin),np.max(rbin)]) #plt.legend(['\rho','\rho'],'lower left'); #title(dwarf) savefig(gpr.get_siglos_png(0)) if gpr.showplots: ioff();show();clf()