def run_test (f,Kb,bitspersymbol,K,dimensionality,tot_constellation,N0,seed): tb = gr.top_block () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f,0) # initial state = 0 # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the FSM) mod = gr.chunks_to_symbols_sf(tot_constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s(); tb.connect (src,src_head,s2fsmi,enc,mod) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,metrics) tb.connect (metrics,va,fsmi2s,dst) tb.run() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () #print ntotal,nright,runlength return (ntotal,ntotal-nright)
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed): tb = gr.top_block () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality enc = trellis.sccc_encoder_ss(fo,0,fi,0,interleaver,K) mod = gr.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX dec = trellis.sccc_decoder_combined_fs(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN,1.0) fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod) tb.connect (src,src_head,s2fsmi,enc,mod) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) #tb.connect (add,head) #tb.connect (tail,fsmi2s,dst) tb.connect (add,dec,fsmi2s,dst) tb.run() #print enc_out.ST(), enc_in.ST() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () return (ntotal,ntotal-nright)
def run_test (f,Kb,bitspersymbol,K,dimensionality,tot_constellation,N0,seed): tb = gr.top_block () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f,0) # initial state = 0 # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the FSM) mod = gr.chunks_to_symbols_sf(tot_constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s(); tb.connect (src,src_head,s2fsmi,enc,mod) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,metrics) tb.connect (metrics,va,fsmi2s,dst) tb.run() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () #print ntotal,nright,runlength return (ntotal,ntotal-nright)
def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed): tb = gr.top_block() # TX # packet = [0]*Kb # for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0 # packet[i] = random.randint(0, 1) # random 0s and 1s # src = gr.vector_source_s(packet,False) src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts # b2s = gr.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f, 0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX metrics = trellis.metrics_f( f.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN ) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f, K, 0, -1) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts # s2b = gr.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits # dst = gr.vector_sink_s(); dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, enc, mod) # tb.connect (src,b2s,s2fsmi,enc,mod) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, metrics) tb.connect(metrics, va, fsmi2s, dst) # tb.connect (metrics,va,fsmi2s,s2b,dst) tb.run() # A bit of cheating: run the program once and print the # final encoder state.. # Then put it as the last argument in the viterbi block # print "final state = " , enc.ST() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() # ntotal = len(packet) # if len(dst.data()) != ntotal: # print "Error: not enough data\n" # nright = 0; # for i in range(ntotal): # if packet[i]==dst.data()[i]: # nright=nright+1 # else: # print "Error in ", i return (ntotal, ntotal - nright)
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed): tb = gr.top_block () # TX #packet = [0]*Kb #for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0 #packet[i] = random.randint(0, 1) # random 0s and 1s #src = gr.vector_source_s(packet,False) src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts #b2s = gr.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f,0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts #s2b = gr.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits #dst = gr.vector_sink_s(); dst = gr.check_lfsr_32k_s() tb.connect (src,src_head,s2fsmi,enc,mod) #tb.connect (src,b2s,s2fsmi,enc,mod) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,metrics) tb.connect (metrics,va,fsmi2s,dst) #tb.connect (metrics,va,fsmi2s,s2b,dst) tb.run() # A bit of cheating: run the program once and print the # final encoder state.. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () #ntotal = len(packet) #if len(dst.data()) != ntotal: #print "Error: not enough data\n" #nright = 0; #for i in range(ntotal): #if packet[i]==dst.data()[i]: #nright=nright+1 #else: #print "Error in ", i return (ntotal,ntotal-nright)
def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed, P): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16 * P) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the FSM input cardinality s2p = gr.stream_to_streams(gr.sizeof_short, P) # serial to parallel enc = trellis.encoder_ss(f, 0) # initiali state = 0 mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = [] noise = [] for i in range(P): add.append(gr.add_ff()) noise.append(gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)) # RX metrics = trellis.metrics_f( f.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN ) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s( f, K, 0, -1) # Put -1 if the Initial/Final states are not set. p2s = gr.streams_to_stream(gr.sizeof_short, P) # parallel to serial fsmi2s = gr.unpacked_to_packed_ss( bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, s2p) for i in range(P): tb.connect((s2p, i), (enc, i), (mod, i)) tb.connect((mod, i), (add[i], 0)) tb.connect(noise[i], (add[i], 1)) tb.connect(add[i], (metrics, i)) tb.connect((metrics, i), (va, i), (p2s, i)) tb.connect(p2s, fsmi2s, dst) tb.run() # A bit of cheating: run the program once and print the # final encoder state. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test(f, Kb, bitspersymbol, K, channel, modulation, dimensionality, tot_constellation, N0, seed): tb = gr.top_block() L = len(channel) # TX # this for loop is TOO slow in python!!! packet = [0] * (K + 2 * L) random.seed(seed) for i in range(len(packet)): packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols for i in range(L): # first/last L symbols set to 0 packet[i] = 0 packet[len(packet) - i - 1] = 0 src = gr.vector_source_s(packet, False) mod = gr.chunks_to_symbols_sf(modulation[1], modulation[0]) # CHANNEL isi = gr.fir_filter_fff(1, channel) add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX skip = gr.skiphead( gr.sizeof_float, L ) # skip the first L samples since you know they are coming from the L zero symbols #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi #va = trellis.viterbi_s(f,K+L,0,0) # Put -1 if the Initial/Final states are not set. va = trellis.viterbi_combined_s( f, K + L, 0, 0, dimensionality, tot_constellation, trellis.TRELLIS_EUCLIDEAN ) # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application... dst = gr.vector_sink_s() tb.connect(src, mod) tb.connect(mod, isi, (add, 0)) tb.connect(noise, (add, 1)) #tb.connect (add,metrics) #tb.connect (metrics,va,dst) tb.connect(add, skip, va, dst) tb.run() data = dst.data() ntotal = len(data) - L nright = 0 for i in range(ntotal): if packet[i + L] == data[i]: nright = nright + 1 #else: #print "Error in ", i return (ntotal, ntotal - nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the outer FSM input cardinality enc_out = trellis.encoder_ss(fo, 0) # initial state = 0 inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short) enc_in = trellis.encoder_ss(fi, 0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX metrics_in = trellis.metrics_f( fi.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN ) # data preprocessing to generate metrics for innner Viterbi gnd = gr.vector_source_f([0], True) siso_in = trellis.siso_f( fi, K, 0, -1, True, False, trellis.TRELLIS_MIN_SUM ) # Put -1 if the Initial/Final states are not set. deinter = trellis.permutation(interleaver.K(), interleaver.DEINTER(), fi.I(), gr.sizeof_float) va_out = trellis.viterbi_s( fo, K, 0, -1) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss( bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, metrics_in) tb.connect(gnd, (siso_in, 0)) tb.connect(metrics_in, (siso_in, 1)) tb.connect(siso_in, deinter, va_out, fsmi2s, dst) tb.run() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed,P): fg = gr.flow_graph () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16*P) # packet size in shorts s2fsmi=gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality s2p = gr.stream_to_streams(gr.sizeof_short,P) # serial to parallel enc = trellis.encoder_ss(f,0) # initiali state = 0 mod = gr.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add=[] noise=[] for i in range(P): add.append(gr.add_ff()) noise.append(gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)) # RX metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set. p2s = gr.streams_to_stream(gr.sizeof_short,P) # parallel to serial fsmi2s=gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() fg.connect (src,src_head,s2fsmi,s2p) for i in range(P): fg.connect ((s2p,i),(enc,i),(mod,i)) fg.connect ((mod,i),(add[i],0)) fg.connect (noise[i],(add[i],1)) fg.connect (add[i],(metrics,i)) fg.connect ((metrics,i),(va,i),(p2s,i)) fg.connect (p2s,fsmi2s,dst) fg.run() # A bit of cheating: run the program once and print the # final encoder state. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () return (ntotal,ntotal-nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, Es, N0, IT, seed): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the outer FSM input cardinality #src = gr.vector_source_s([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],False) enc = trellis.pccc_encoder_ss(fo, 0, fi, 0, interleaver, K) code = gr.vector_sink_s() mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX metrics_in = trellis.metrics_f( fi.O() * fo.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN ) # data preprocessing to generate metrics for innner SISO scale = gr.multiply_const_ff(1.0 / N0) dec = trellis.pccc_decoder_s(fo, 0, -1, fi, 0, -1, interleaver, K, IT, trellis.TRELLIS_MIN_SUM) fsmi2s = gr.unpacked_to_packed_ss( bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, enc, mod) #tb.connect (src,enc,mod) #tb.connect(enc,code) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, metrics_in, scale, dec, fsmi2s, dst) tb.run() #print code.data() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test (f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,seed): fg = gr.flow_graph () L = len(channel) # TX # this for loop is TOO slow in python!!! packet = [0]*(K+2*L) random.seed(seed) for i in range(len(packet)): packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols for i in range(L): # first/last L symbols set to 0 packet[i] = 0 packet[len(packet)-i-1] = 0 src = gr.vector_source_s(packet,False) mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0]) # CHANNEL isi = gr.fir_filter_fff(1,channel) add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX skip = gr.skiphead(gr.sizeof_float, L) # skip the first L samples since you know they are coming from the L zero symbols #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi #va = trellis.viterbi_s(f,K+L,-1,0) # Put -1 if the Initial/Final states are not set. va = trellis.viterbi_combined_fs(f,K+L,0,0,dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # using viterbi_combined_fs instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application... dst = gr.vector_sink_s() fg.connect (src,mod) fg.connect (mod,isi,(add,0)) fg.connect (noise,(add,1)) #fg.connect (add,metrics) #fg.connect (metrics,va,dst) fg.connect (add,skip,va,dst) fg.run() data = dst.data() ntotal = len(data) - L nright=0 for i in range(ntotal): if packet[i+L]==data[i]: nright=nright+1 #else: #print "Error in ", i return (ntotal,ntotal-nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, channel, modulation, dimensionality, tot_constellation, Es, N0, IT, seed): tb = gr.top_block() L = len(channel) # TX # this for loop is TOO slow in python!!! packet = [0] * (K) random.seed(seed) for i in range(len(packet)): packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols src = gr.vector_source_s(packet, False) enc_out = trellis.encoder_ss(fo, 0) # initial state = 0 inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short) mod = gr.chunks_to_symbols_sf(modulation[1], modulation[0]) # CHANNEL isi = gr.fir_filter_fff(1, channel) add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX (head, tail) = make_rx(tb, fo, fi, dimensionality, tot_constellation, K, interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM) dst = gr.vector_sink_s() tb.connect(src, enc_out, inter, mod) tb.connect(mod, isi, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, head) tb.connect(tail, dst) tb.run() data = dst.data() ntotal = len(data) nright = 0 for i in range(ntotal): if packet[i] == data[i]: nright = nright + 1 #else: #print "Error in ", i return (ntotal, ntotal - nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the outer FSM input cardinality enc_out = trellis.encoder_ss(fo, 0) # initial state = 0 inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short) enc_in = trellis.encoder_ss(fi, 0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX metrics_in = trellis.metrics_f( fi.O(), dimensionality, constellation, trellis.TRELLIS_EUCLIDEAN ) # data preprocessing to generate metrics for innner Viterbi va_in = trellis.viterbi_s(fi, K, 0, -1) # Put -1 if the Initial/Final states are not set. deinter = trellis.permutation(interleaver.K(), interleaver.DEINTER(), 1, gr.sizeof_short) metrics_out = trellis.metrics_s( fo.O(), 1, [0, 1, 2, 3], trellis.TRELLIS_HARD_SYMBOL ) # data preprocessing to generate metrics for outer Viterbi (hard decisions) va_out = trellis.viterbi_s(fo, K, 0, -1) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, metrics_in) tb.connect(metrics_in, va_in, deinter, metrics_out, va_out, fsmi2s, dst) tb.run() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,Es,N0,IT,seed): tb = gr.top_block () L = len(channel) # TX # this for loop is TOO slow in python!!! packet = [0]*(K) random.seed(seed) for i in range(len(packet)): packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols src = gr.vector_source_s(packet,False) enc_out = trellis.encoder_ss(fo,0) # initial state = 0 inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short) mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0]) # CHANNEL isi = gr.fir_filter_fff(1,channel) add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM) dst = gr.vector_sink_s(); tb.connect (src,enc_out,inter,mod) tb.connect (mod,isi,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,head) tb.connect (tail,dst) tb.run() data = dst.data() ntotal = len(data) nright=0 for i in range(ntotal): if packet[i]==data[i]: nright=nright+1 #else: #print "Error in ", i return (ntotal,ntotal-nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, Es, N0, IT, seed): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the outer FSM input cardinality enc_out = trellis.encoder_ss(fo, 0) # initial state = 0 inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short) enc_in = trellis.encoder_ss(fi, 0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX (head, tail) = make_rx(tb, fo, fi, dimensionality, constellation, K, interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM) #(head,tail) = make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_SUM_PRODUCT) fsmi2s = gr.unpacked_to_packed_ss( bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, head) tb.connect(tail, fsmi2s, dst) tb.run() #print enc_out.ST(), enc_in.ST() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, Es, N0, IT, seed): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the outer FSM input cardinality enc = trellis.sccc_encoder_ss(fo, 0, fi, 0, interleaver, K) mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX dec = trellis.sccc_decoder_combined_fs(fo, 0, -1, fi, 0, -1, interleaver, K, IT, trellis.TRELLIS_MIN_SUM, dimensionality, constellation, digital.TRELLIS_EUCLIDEAN, 1.0) fsmi2s = gr.unpacked_to_packed_ss( bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod) tb.connect(src, src_head, s2fsmi, enc, mod) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) #tb.connect (add,head) #tb.connect (tail,fsmi2s,dst) tb.connect(add, dec, fsmi2s, dst) tb.run() #print enc_out.ST(), enc_in.ST() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f, 0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX va = trellis.viterbi_combined_fs( f, K, 0, -1, dimensionality, constellation, trellis.TRELLIS_EUCLIDEAN ) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss( bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, enc, mod) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, va, fsmi2s, dst) tb.run() # A bit of cheating: run the program once and print the # final encoder state.. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, Es, N0, IT, seed): tb = gr.top_block() # TX src = gr.lfsr_32k_source_s() src_head = gr.head(gr.sizeof_short, Kb / 16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss( bitspersymbol, gr.GR_MSB_FIRST ) # unpack shorts to symbols compatible with the outer FSM input cardinality enc_out = trellis.encoder_ss(fo, 0) # initial state = 0 inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short) enc_in = trellis.encoder_ss(fi, 0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation, dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed) # RX (head, tail) = make_rx( tb, fo, fi, dimensionality, constellation, K, interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM ) # (head,tail) = make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_SUM_PRODUCT) fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod) tb.connect(mod, (add, 0)) tb.connect(noise, (add, 1)) tb.connect(add, head) tb.connect(tail, fsmi2s, dst) tb.run() # print enc_out.ST(), enc_in.ST() ntotal = dst.ntotal() nright = dst.nright() runlength = dst.runlength() return (ntotal, ntotal - nright)
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed): tb = gr.top_block () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality enc = trellis.encoder_ss(f,0) # initial state = 0 mod = gr.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX va = trellis.viterbi_combined_fs(f,K,0,-1,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set. fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s(); tb.connect (src,src_head,s2fsmi,enc,mod) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,va,fsmi2s,dst) tb.run() # A bit of cheating: run the program once and print the # final encoder state.. # Then put it as the last argument in the viterbi block #print "final state = " , enc.ST() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () return (ntotal,ntotal-nright)
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed): tb = gr.top_block () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality #src = gr.vector_source_s([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],False) enc = trellis.pccc_encoder_ss(fo,0,fi,0,interleaver,K) code = gr.vector_sink_s() mod = gr.chunks_to_symbols_sf(constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX metrics_in = trellis.metrics_f(fi.O()*fo.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner SISO scale = gr.multiply_const_ff(1.0/N0) dec = trellis.pccc_decoder_s(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM) fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s() tb.connect (src,src_head,s2fsmi,enc,mod) #tb.connect (src,enc,mod) #tb.connect(enc,code) tb.connect (mod,(add,0)) tb.connect (noise,(add,1)) tb.connect (add,metrics_in,scale,dec,fsmi2s,dst) tb.run() #print code.data() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () return (ntotal,ntotal-nright)
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,tot_constellation,Es,N0,IT,seed): fg = gr.flow_graph () # TX src = gr.lfsr_32k_source_s() src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the iouter FSM input cardinality enc_out = trellis.encoder_ss(fo,0) # initial state = 0 inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short) enc_in = trellis.encoder_ss(fi,0) # initial state = 0 # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the innner FSM) mod = gr.chunks_to_symbols_sf(tot_constellation,dimensionality) # CHANNEL add = gr.add_ff() noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed) # RX (head,tail) = make_rx(fg,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM) fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts dst = gr.check_lfsr_32k_s(); fg.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod) fg.connect (mod,(add,0)) fg.connect (noise,(add,1)) fg.connect (add,head) fg.connect (tail,fsmi2s,dst) fg.run() ntotal = dst.ntotal () nright = dst.nright () runlength = dst.runlength () #print ntotal,nright,runlength return (ntotal,ntotal-nright)