def prep_ccsn(h, sim_times, Tc, fw): """Function to prepare a single polarization of a simulated ccsn waveform - resample, high pass filter and window """ dt = sim_times[1] - sim_times[0] h = TimeSeries(h, t0=sim_times[0], dt=dt) h = h.resample(rate=fw, ftype='iir', n=20) # downsample to working frequency fw h = h.highpass(frequency=11, filtfilt=True) # filter out frequencies below 20Hz inj_window = scisig.tukey(M=len(h), alpha=0.08, sym=True) h = h * inj_window h = h.pad(int((fw * Tc - len(h)) / 2)) return h
def load_inject_condition_ccsn(t_i, t_f, t_inj, ra, dec, ccsn_paper, ccsn_file, D_kpc=10, local=False, Tc=16, To=2, fw=2048, window='tukey', detector='H', qtrans=False, qsplit=False, dT=2.0, save=False, data_path=None): """Fucntion to load a chunk, inject a waveform and condition, created to enable parallelizing. """ if local: files = get_files(detector) try: data = TimeSeries.read(files, start=t_i, end=t_f, format='hdf5.losc') # load data locally except: return else: # load data from losc try: data = TimeSeries.fetch_open_data(detector + '1', *(t_i, t_f), sample_rate=fw, verbose=False, cache=True) except: return if np.isnan(data.value).any(): return det_obj = Detector(detector + '1') delay = det_obj.time_delay_from_detector(Detector('H1'), ra, dec, t_inj) t_inj += delay fp, fc = det_obj.antenna_pattern(ra, dec, 0, t_inj) wfs_path = Path(git_path + '/shared/ccsn_wfs/' + ccsn_paper) sim_data = [i.strip().split() for i in open(join(wfs_path, ccsn_file)).readlines()] if ccsn_paper == 'radice': line_s = 1 else: line_s = 0 D = D_kpc * 3.086e+21 # cm sim_times = np.asarray([float(dat[0]) for dat in sim_data[line_s:]]) hp = np.asarray([float(dat[1]) for dat in sim_data[line_s:]]) / D if ccsn_paper == 'abdikamalov': hc = np.zeros(hp.shape) else: hc = np.asarray([float(dat[2]) for dat in sim_data[line_s:]]) / D dt = sim_times[1] - sim_times[0] h = fp * hp + fc * hc h = TimeSeries(h, t0=sim_times[0], dt=dt) h = h.resample(rate=fw, ftype = 'iir', n=20) # downsample to working frequency fw h = h.highpass(frequency=11, filtfilt=True) # filter out frequencies below 20Hz inj_window = scisig.tukey(M=len(h), alpha=0.08, sym=True) h = h * inj_window h = h.pad(int((fw * Tc - len(h)) / 2)) wf_times = data.times.value shift = int((t_inj - (wf_times[0] + Tc/2)) * fw) h = np.roll(h.value, shift) h = TimeSeries(h, t0=wf_times[0], dt=data.dt) try: h = h.taper() except: pass injected_data = data.inject(h) cond_data = condition_data(injected_data, To, fw, window, qtrans, qsplit, dT) x = [] times = [] for dat in cond_data: x.append(dat.values) times.append(dat.t0) x = np.asarray(x) times = np.asarray(times) idx = find_closest_index(t_inj, times) x = x[idx] times = times[idx] return x, times
DURATION = 68 FREQ = 1 / 10 SAMPLE = 4096 TIMES = numpy.arange(0, DURATION, 1 / SAMPLE) PHASE = 42 * numpy.sin(2 * numpy.pi * FREQ * TIMES) / (2 * numpy.pi * FREQ) SCATTER = TimeSeries( (numpy.sin(numpy.pi * TIMES / DURATION) * numpy.cos(2 * numpy.pi * PHASE)), sample_rate=SAMPLE, ) HOFT = TimeSeries( numpy.random.normal(loc=1, scale=1.5, size=SCATTER.size), sample_rate=SAMPLE, ).inject(SCATTER.highpass(10)) AUX = TimeSeriesDict({ ':'.join([IFO, chan]): TimeSeries( numpy.random.normal(loc=1, scale=1e-3, size=SCATTER.size), sample_rate=SAMPLE, name=':'.join([IFO, chan]), ).crop(4, 64) for chan in simple.MOTION_CHANNELS[1::] }) PHASE = PHASE[4 * SAMPLE:-4 * SAMPLE] AUX['{}:SUS-ITMX_R0_DAMP_L_IN1_DQ'.format(IFO)] += 1.064 * PHASE / 2 # -- cli tests ----------------------------------------------------------------